NOTE

A Case of Large Prolactinoma Supposed to be Cured by Bromocriptine Therapy

KAZUNORI ARITA, TOHRU UOZUMI AND MASAHIRO OHTA

Department of Neurosurgery, Hiroshima University
School of Medicine, Hiroshima Japan

Abstract

The authors reported a patient with a large prolactinoma (PRL 1,716 ng/ml) who was treated with bromocriptine for two years and followed up for a subsequent 36 months. After the start of the therapy, the tumor size was dramatically reduced, and finally the disappearance of the tumor was confirmed by high resolution coronal CT. The serum prolactin level and pituitary function were normalized. The tumor has not regrown and the blood prolactin level has remained normal for 36 months since the discontinuation of bromocriptine administration. This is a very rare case report on the eradicative effect of bromocriptine on such a large prolactinoma.

Another characteristic of this case was that the prolactin reserve was maintained not only before the therapy but also during the early stage of the therapy.

Bromocriptine can cause both a reduction in tumor size and a decrease in blood prolactin in many prolactinomas. However, it is well known that the discontinuation of bromocriptine usually results in a new increase in blood prolactin and regrowth of the tumor. So bromocriptine has generally been considered a non-eradicative therapeutic agent for prolactinoma.

The authors examined a patient with a large prolactinoma which was cured radically by bromocriptine therapy.

Case

This 39-year-old man was well until February 1981 when he became aware of left visual disturbance. The visual acuity of his left eye was 20/40. His right visual acuity was 20/16, but this also began to fail at the beginning of August 1981. Thereafter, he sometimes suffered from headaches and his visual acuity became worse. He was then referred to the Department of Neurosurgery, Hiroshima University Hospital, and admitted on September 4th, 1981.

Examination

He was in normal general condition, 163 cm in height and weighed 72 kg. Visual
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Bromocriptine administration</td>
<td>before</td>
<td>3rd day</td>
<td>1st month</td>
<td>6th month</td>
</tr>
<tr>
<td>Blood PRL level</td>
<td>1.716.0 ng/ml</td>
<td>195.0 ng/ml</td>
<td>280.0 ng/ml</td>
<td>5.6 ng/ml</td>
</tr>
<tr>
<td>Visual field</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Left</td>
<td>Right</td>
<td>Left</td>
<td>Right</td>
<td>Left</td>
</tr>
<tr>
<td>Visual acuity</td>
<td>20/25</td>
<td>20/25</td>
<td>20/12</td>
<td>20/12</td>
</tr>
</tbody>
</table>

Fig. 1. Clinical course. Bromocriptine administration resulted in marked reduction in tumor size and serum PRL. Simultaneously visual acuity and visual fields are rapidly normalized.
acuity was 20/100 in the right and 20/22
in the left eye. Visual field examination
showed a typical bitemporal defect (Fig. 1).
The other neurological examinations were
normal. Skull X-ray films showed enlarged
sella turcica with a volume of 2800 mm³
(Dichiro) and a double floor. Tomography
revealed deepening and destruction of the
sellar floor especially on the left side.
Coronal CT scan demonstrated a pituitary
tumor of slightly high density with supra-
sellar expansion (Fig. 1). The tumor was
enhanced homogeneously by contrast medi-
um. The maximum height on the coronal
CT scan of this tumor was 28 mm.
Bilateral carotid angiography was normal
except for a pocket formation in the left
carotid siphon.
The blood prolactin level was 1,716.0
ng/ml. Basal concentrations of other pituitary
hormones were normal. Poor response of
growth hormone (GH) in an insulin-tolerance

<table>
<thead>
<tr>
<th>Date</th>
<th>GH (ng/ml)</th>
<th>Cortisol (µg/dl)</th>
<th>TSH (mU/ml)</th>
<th>PRL (ng/ml)</th>
<th>LH (mU/ml)</th>
<th>FSH (mU/ml)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Base</td>
<td>Peak</td>
<td>Base</td>
<td>Peak</td>
<td>Base</td>
<td>Peak</td>
</tr>
<tr>
<td>before</td>
<td>Sep. 5,1981</td>
<td>2.2</td>
<td>3.2</td>
<td>17.3</td>
<td>23.2</td>
<td>2.5</td>
</tr>
<tr>
<td>1 month</td>
<td>Oct. 22,1981</td>
<td>0.9</td>
<td>4.9</td>
<td>12.3</td>
<td>26.0</td>
<td>2.3</td>
</tr>
<tr>
<td>8 months</td>
<td>May. 13,1982</td>
<td>2.3</td>
<td>15.1</td>
<td>9.9</td>
<td>20.2</td>
<td>2.8</td>
</tr>
<tr>
<td>2 years and 8 months</td>
<td>May. 12,1984</td>
<td>0.4</td>
<td>31.7</td>
<td>8.3</td>
<td>17.4</td>
<td>2.9</td>
</tr>
<tr>
<td>9 months after discontinuation</td>
<td>Mar. 16,1985</td>
<td>3.1</td>
<td>22.5</td>
<td>9.9</td>
<td>22.6</td>
<td>2.5</td>
</tr>
</tbody>
</table>

Fig. 2. Changes in pituitary hormonal function.

Fig. 3. Results of the CB-154 test (bromocriptine 2.5 mg). PRL level reduced one-tenth of the basal concentration.
test and thyroid stimulating hormone (TSH) in a thyrotropin releasing hormone (TRH) test was observed. Blood prolactin was increased to four times (6,226.0 ng/ml) the basal concentration (1,716.0 ng/ml) by intravenous injection of TRH (500 µg) and decreased to one-tenth (198.0 ng/ml) of the basal prolactin concentration 6 hours after a single administration of bromocriptine (2.5 mg) (Fig. 2, 3).

Therapeutic course

This tumor was diagnosed as a large prolactinoma. The administration of bromocriptine (5 mg/day) was started October 22, 1981. The dosage of bromocriptine was gradually increased to 15 mg/day.

Two days after the start of the therapy (total dose of 10 mg), the patient became aware of some restoration of visual acuity. Visual acuity of his right eye was improved to 20/25. The blood prolactin level was reduced to 195.0 ng/ml. CT scan revealed a slight reduction in tumor size (Fig. 1).

One month after the start of the therapy, visual acuity and the visual field were completely normalized. The blood prolactin level was 280.0 ng/ml. CT scan revealed a considerable reduction in the tumor size. The height of the tumor was 17 mm.

Six months after the start of the therapy, blood prolactin was normalized (11.0 ng/ml). CT scan demonstrated the complete disappearance of the tumor and the development of empty sella.

Two years and 9 months after the start of the therapy, blood prolactin stayed within the normal range during the 15 mg/day administration of bromocriptine (Fig. 4). Bromocriptine administration has been discontinued since June 29th, 1984.

At present, 36 months after the discontinuation, blood prolactin remains normal. High resolution CT revealed that the tumor has not recurred.
Fig. 5. Changes in PRL response to TRH test. PRL reserve was maintained until 8 months after the start of the therapy.

With regard to the reserve function of pituitary hormones, stimulation tests revealed poor response of GH and TSH before therapy. One month after the therapy, TSH reserve was normalized, and 8 months after the start, GH reserve was also normalized. Since then, the reserve functions of GH and TSH have been normal. (Fig. 2)

The response of prolactin to TRH stimulation was maintained not only before the therapy but during the early stage of the therapy (Blood prolactin increased to more than twice the basal concentration). But since the last stage of the therapy, prolactin reserve has deteriorated. (Fig. 5)

Discussion

Bromocriptine administration is widely accepted to have a prolactin reducing effect and tumor size reducing effect (Bonneville et al., 1982; Dallabonzana et al., 1984; Eversman et al., 1979; Matsumura et al., 1981; Nillius et al., 1978). These effect were thought by Rengachery et al. (1982) and Tindall et al. (1982) to be due to reversible inhibition of the protein-synthetic machinery and the marked reduction in the cytoplasmic volume.

However, the authors argued that these effect were attributed to both a cytotoxic effect on bromocriptine-sensitive cells and a cytostatic effect on bromocriptine-resistant cells based on microscopic and electromicroscopic findings (Gen et al., 1983ab). And the possibility of a truly curative effect on the prolactinoma, if it consists of bromocriptine-sensitive cells alone, was suggested (Gen et al., 1983a)

Usually prolactin increases again to a considerable concentration after discontinuation of bromocriptine therapy (Bergh et al., 1981; Thorner et al., 1981). Our own experience has shown that prolactin increases again to the pretreated level in almost all cases. This is therefore a rare case showing an eradicative effect of bromocriptine on a large prolactinoma (PRL 1716.0 ng/ml). The responsiveness of this tumor to bromocriptine therapy is considered to be attributed to the high percentage of bromocriptine-sensitive cells and the large amount of bromocriptine administrated (10,775.5 mg in total). We can say this is exactly the type of case that we suggested in the above mentioned study.

Recently some authors reported similar cases. Zárate et al. (1983) reported 6 cases in which prolactin levels remained normal for two years after bromocriptine discontinuation. Teramoto et al. (1980) and Moriondo et al. (1985) reported similar cases. As for large prolactinoma, Nissim et al. (1983) reported that persistent normalization of serum prolactin was obtained in 3 out of 32 cases treated with bromocriptine (Follow up period: 12 months). Dallabonzana et al. (1984) reported that persistent normalization of serum prolactin was obtained in only
one patient out of 26 large prolactinoma cases (Follow up period: 12 months). There is the possibility of a complete cure of the large prolactinoma by bromocriptine therapy as in this case, though it may be a very rare. In the near future, with an increase in the number of cases of large prolactinoma treated with bromocriptine and followed up for a long term, the real frequency of complete cure by bromocriptine therapy will become clear.

Blood prolactin response to TRH of prolactinomas is generally considered to be insignificant (Assies et al., 1980). In our own experience with 83 prolactinomas, prolactin reserve was maintained (blood prolactin increased to more than twice the basal concentration after TRH iv) in only 4 cases before treatment. Furthermore bromocriptine is regarded as suppressing the prolactin reserve. So it is remarkable that the prolactin reserve was maintained before therapy and during the early stage of the bromocriptine therapy in this case. As it is generally accepted that GH secreting adenomas which respond positively to TRH test are usually bromocriptine-sensitive (Liuzzi et al., 1974), similarly we might say that the prolactinoma with positive prolactin response to TRH test as in this case, may be bromocriptine-sensitive. If that is true, such prolactinomas might be expected to be treated radically by bromocriptine therapy. The conclusion should be deferred until more of such cases are observed.

References

