Physiological Role of Placental Proteases: Interaction Between Pregnancy-Induced Bioactive Peptides and Proteases

SHIGEHIKO MIZUTANI, KEIKO GOTO, ATSUO ITAKURA, MADOKA FURUHASHI, OSAMU KURAUCHI, FUMITAKA KIKKAWA AND YUTAKA TOMODA
Department of Obstetrics and Gynecology, Nagoya University School of Medicine, Nagoya 466, Japan

Abstract. We found 9 proteases in human placenta. Our studies showed that these placental proteases metabolize vasoactive and immunomodulating peptides, possibly derived from the fetus, and protect the exchange of peptide hormones across the placenta in order to maintain feto-placental homeostasis. We clarified the pregnancy serum oxytocinase discovered by Fekete in 1930 and angiotensinase by Page in 1947, respectively. In addition we showed the pregnancy serum bradykininase. Changes in maternal serum protease activities were useful for monitoring of pre-eclampsia and predicting the onset of labor. In addition, the ratio of peak systolic over least diastolic pressure of uterine or umbilical artery assessed by the Doppler technique was closely correlated with the levels of maternal serum proteases in pre-eclampsia, which suggested that placental proteases might control uteroplacental circulation via the regulation of concentrations of vasoactive peptides in uteroplacental circulation. The degradation of immunomodulating peptides by placental protease also suggests the possible involvement of placental protease in the immunological aspect of pregnancy.

Key words: Placental protease, Placental function, Pre-eclampsia, Onset of labor, Immunology of pregnancy

RECENT ADVANCES in fetal endocrinology suggest that peptide hormones derived from the fetal site are as important in the physiology and pathology of human pregnancy as those from the maternal site. Human fetuses produce peptide hormones, some of which are considered to be important factors in fetal development, and growth [1-4], but in order to maintain feto-maternal homeostasis, the exchange of some peptide hormones between the maternal and fetal sides should be restricted. The inability of peptide hormones to cross the placenta contributes partially to such restrictions.

Although many proteases exist in human placenta, their physiological roles are still unknown. It is reasonable to assume that fetal peptides are candidates for natural substrates of placental proteases. This paper reviews the research concerned with placental proteases and their involvement in the metabolism and degradation of peptide hormones in relation to the physiology and pathology of human pregnancy.

I. Placental Proteases and their Involvement in the Metabolism and Degradation of Peptide Hormones

Many proteases exist in human placenta and some are released into the maternal circulation. A protease is classified according to the peptide site
of hydrolysis: exopeptidase consists of aminopeptidases, which hydrolyze from the N-terminal amino acid, and carboxypeptidases, which hydrolyze from the C-terminal amino acid. Endopeptidases hydrolyze the internal peptide bond. The following 9 proteases have been shown to be present in human placenta.

A. Oxytocinase (EC 3. 4. 11. 3)

The oxytocinase that increases in pregnancy serum is identical to cystine aminopeptidase i. e. placental leucine aminopeptidase (P-LAP) [5]. The origin of P-LAP appears to be placental lysosomes and we purified this enzyme from retro-placental serum [6]. This enzyme hydrolyzes oxytocin, vasopressin and angiotensin III (A-III) [5]. It is noteworthy that vasopressin is hydrolyzed at least 3 times faster than oxytocin when monitored by the release of Tyr residue located at the second position from the N-terminal end of both hormones [5] (Fig. 1).

B. Aminopeptidase N (EC 3. 4. 11. 2)

Aminopeptidase N (AP-N) is a glycoprotein localized in the microvillar membrane of a variety of human organs, tissues and haematopoietic cells. We purified this enzyme from human placental microsomal fractions [6]. We used immobilized bestatin, the product of streptomyces, which is a powerful inhibitor of aminopeptidases N and B, for the affinity column in the purification of this enzyme [7]. Molecular cloning showed that AP-N is identical to the cell surface cluster of the differentiation antigen (CD13) [8]. Oligonucleotide probes, designated and synthesized from the partial amino acid sequence data which were identified in human placental AP-N, were used to reveal mRNA of approximately 3.5 kb in human placenta (unpublished data) (Fig. 2).

The function of this enzyme, i. e. the natural substrate(s), is still unknown. We showed that AP-N actively hydrolyzed immunomodulatory peptides such as thymopentin and splenopentin,

Fig. 1. Degradation of bioactive peptides by placental leucine aminopeptidase (P-LAP).

<table>
<thead>
<tr>
<th>Peptide</th>
<th>Amino Acid Sequence</th>
<th>Hydrolyzed Peptide</th>
</tr>
</thead>
<tbody>
<tr>
<td>Oxytocin</td>
<td>Cys-Tyr-Lys-Glu-Asp-Cys-Pro-Leu-Gly-NH$_2$</td>
<td>[Arg]2 Vasopressin</td>
</tr>
<tr>
<td>Angiotensin III</td>
<td>Arg-Val-Tyr-Leu-His-Pro-Phe</td>
<td></td>
</tr>
</tbody>
</table>
constituent peptides of thymopoietin and splenin, respectively, and tuftsin found in the IgG heavy chain. AP-N also hydrolyzed endogenous opioids such as Met-enkephalin and Leu-enkephalin, neuregulin A and somatostatin from their N-terminus [9] (Table 1).

C. Post-proline endopeptidase (EC 3.4.21.26)

Walter et al. demonstrated the existence of an enzyme that cleaved the Pro7-Leu8 peptide bond of oxytocin in the human uterus, referred to it as post-proline endopeptidase and purified it from lamb kidney [10]. They showed that the enzyme responsible for oxytocin degradation is the cytosolic post-proline endopeptidase. We purified this enzyme from human placenta [11] and tried to confirm the degradation of oxytocin by it, but we found that human placental post-proline endopeptidase did not liberate any amino acids from oxytocin [12]. We also found that human placental post-proline endopeptidase liberated the C-terminal Arg of angiotensin II (A-II). Recently Tan et al. cloned lysosomal carboxypeptidase (EC 3.4.16.2) (angiotensinase C) and found the similarity of its amino acid sequence to post-proline endopeptidase [13].

D. Angiotensin-converting enzyme (ACE, kininase II, EC 3.4.15.1)

This enzyme converts angiotensin I (A-I) to A-II by cleaving the C-terminal dipeptide, His-Pro, of A-I and also inactivates bradykinin (BK) by cleaving the C-terminal and adjacent peptides (Fig. 3). We purified this enzyme from human placenta by affinity chromatography with captopril, an orally active antihypertensive agent and potent inhibitor of this enzyme [14]. Soubrier et al. cloned this enzyme [15]. We showed that two different sizes of ACE mRNA, 3.9kb and 4.5kb, are detectable in human placenta [16].

E. Aminopeptidase A (AP-A, EC 3.4.11.7)

This enzyme hydrolyzes N-terminal acidic amino acids, such as aspartic and glutamic acid, from the peptide or synthetic substrate. We purified this enzyme from human placenta by affinity chromatography with captoril, an orally active antihypertensive agent and potent inhibitor of this enzyme [14]. Soubrier et al. cloned this enzyme [15]. We showed that two different sizes of ACE mRNA, 3.9kb and 4.5kb, are detectable in human placenta [16].

F. Carboxypeptidase N (kininase I, EC 3.4.17.3)

This enzyme hydrolyzes the C-terminal basic amino acids of peptide substrates and an inactivator of peptides such as BK, anaphylatoxin and fibrinopeptides (Fig. 5). We purified this enzyme from human placenta using affinity chromatography with histargin, a potent inhibitor of this enzyme discovered by Aoyagi et al. from the products of streptomyces [21]. Molecular cloning of this enzyme, purified from membrane fractions of various organs and human plasma, showed the molecular difference between membrane (carboxypeptidase M) and serum (carboxypeptidase N) enzymes [22].

G. Dipeptidyl peptidase IV (EC 3.4.14.5)

This enzyme is localized on the cell surface and cleaves N-terminal dipeptides from polypeptides containing Pro as the penultimate amino acids, such as substance P, fibrin a-chain and casmorphine 5. We purified this enzyme from human placenta by affinity chromatography with the dipeptide Gly-Pro [23]. The primary structure of this enzyme was deduced from its cDNA and the human CD26 antigen was identified as this enzyme [24]. This enzyme was also shown to be involved in the interaction of hepatocytes with the extracellular matrix [25].

H. Aminopeptidase B (AP-B, EC 3.4.11.6)

This enzyme liberates N-terminal basic amino acids such as Arg and Lys from synthetic substrates or peptides. It is widely distributed in mammalian tissues and is a sulfhydryl-dependent cytosolic enzyme. We purified this enzyme from human placenta [26]. Although its involvement in the formation of BK from kallidin-10 was suggested, this enzyme does not seem to be involved in the metabolism of kinins and A-III [26]. The natural substrate of this enzyme is still unknown.

I. Aminopeptidase P (AP-P, EC 3.4.11.9)

This enzyme hydrolyzes N-terminal amino acid residues linked to Pro in peptides of low and high
Table 1. Cleavage of amino acids from bioactive peptides by human placental aminopeptidase N(AP-N)

<table>
<thead>
<tr>
<th>Amino acid sequence of bioactive peptides</th>
<th>Rate of cleavage of 1st peptide bond** (μmol/min/mg protein)</th>
<th>Free amino acid(s) identified by HPLC, first appeared at time indicated</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>3 min</td>
<td>5 min</td>
</tr>
<tr>
<td>Thymopetin</td>
<td></td>
<td></td>
</tr>
<tr>
<td><Arg-Lys-Asp-Val-Tyr></td>
<td>7.17</td>
<td></td>
</tr>
<tr>
<td>Thymopoietin II peptide fragment</td>
<td></td>
<td></td>
</tr>
<tr>
<td><Gly-Gln-Arg-Lys-Asp-Val-Tyr-Val-Glu-Leu-Tyr-Leu></td>
<td>0.036</td>
<td></td>
</tr>
<tr>
<td>Splenopentin</td>
<td></td>
<td></td>
</tr>
<tr>
<td><Arg-Lys-Glu-Val-Tyr></td>
<td>16.05</td>
<td>Arg</td>
</tr>
<tr>
<td>THF</td>
<td></td>
<td></td>
</tr>
<tr>
<td><Leu-Glu-Asp-Gly-Pro-Lys-Phe-Leu></td>
<td>0.62</td>
<td></td>
</tr>
<tr>
<td>Tuftsin</td>
<td></td>
<td></td>
</tr>
<tr>
<td><Thr-Lys-Prof-Arg></td>
<td>5.14</td>
<td></td>
</tr>
<tr>
<td>Rigin</td>
<td></td>
<td></td>
</tr>
<tr>
<td><Gly-Gln-Pro-Arg></td>
<td>1.83</td>
<td></td>
</tr>
<tr>
<td>Met-enkephalin</td>
<td></td>
<td></td>
</tr>
<tr>
<td><Tyr-Gly-Gly-Phe-Met></td>
<td>8.82</td>
<td>Tyr</td>
</tr>
<tr>
<td>Somatostatin</td>
<td></td>
<td></td>
</tr>
<tr>
<td><Ala-Gly-Cys-Lys-Asn-Phe-Phe-Trp-Lys-Thr-Phe-Thr-Ser-Cys></td>
<td>1.75</td>
<td></td>
</tr>
<tr>
<td>Neurokinin A</td>
<td></td>
<td></td>
</tr>
<tr>
<td><His-Lys-Thr-Asp-Ser-Phe-Val-Gly-Leu-Met-NH₂></td>
<td>2.09</td>
<td>His</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

**The velocity was calculated from more than 3 plots checking the linear part of the reactions. The concentration of each peptide in the enzymatic reactions was 0.29 mM.
ROLE OF PLACENTAL PROTEASES IN PATHOPHYSIOLOGY OF PREGNANCY

Renin-Angiotensin system

Prorenin

Renin

Angiotensinogen

Angiotensin I (A-I)

Angiotensin II (A-II)

Angiotensin converting enzyme (ACE, Kininase II)

Aminopeptidase A

Aminopeptidase P

P-LAP

Aminopeptidase N

Inactive peptide, Amino acid

Kallikrein-Kinin system

Kinogen

Kallikrein

Bradykinin

Carboxypeptidase N (Kininase I)

Des-Arg²-bradykinin (B1 receptor agonist)

Fig. 3. Degradation and metabolism of renin-angiotensin and kallikrein-kinin system by placental proteases.

Angiotensin converting enzyme (ACE)

A-I: Asp → Arg → Val → Tyr → Ile → His → Pro → Phe → His → Leu

A-II: Asp → Arg → Val → Tyr → Ile → His → Pro → Phe

P-LAP (oxytocinase)

A-III: Arg → Val → Tyr → Ile → His → Pro → Phe

Aminopeptidase N

Fig. 4. Degradation and metabolism of angiotensins by placental proteases.

molecular weight. It is probable that, together with ACE and kininase I, AP-P is responsible for the inactivation of circulating BK [27] (Fig. 5A). Hooper and Turner showed that AP-P is the ectoenzyme anchored via glycosyl-phosphatidyl-inositol (PI) [28]. We found this enzyme in human placenta and also found the enzymatic difference between cytosolic and membrane AP-P. AP-P in the placental microvillar membranes was released by PI-specific phospholipase C, and pregnancy serum AP-P was considered to be derived from placental microvillar membranes [29].

We found significant increases in P-LAP [30], AP-A [31], kininase I [32], AP-P [33] and ACE (kininase II) [34] in maternal serum during normal pregnancy.

II. Regulation of Biosynthesis and Secretion of Placental Proteases

During pregnancy, steroid hormones such as progesterone, estradiol, and cortisol are synthesized in the fetoplacental unit. The production of these
Fig. 5. A: Degradation and metabolism of bradykinin by placental proteases. B: Effect of placental aminopeptidase A (AP-A) on blood pressure in angiotensin II-induced hypertension.

steroids in the feto-placental unit and their concentration in the maternal and fetal circulation increase with advancing gestation, but little is known about specific functions of the steroids on the development and metabolic well-being of the fetus. On the other hand, a possible site of production of pregnancy serum oxytocinase (P-LAP) is shown to be the lysosomes of the placenta [6], from which the enzyme is released into the maternal circulation presumably through changes in membrane permeability. In view of the fact that progesterone acts to destabilize the membrane of lysosomes, while cortisol acts to stabilize them, steroid hormones might play a part in such changes in the permeability of the lysosomal membranes to oxytocinase and thus regulate its levels in pregnancy serum [35].

We investigated the effect of estradiol plus progesterone on placental proteases in pregnant rats. The administration of both steroids increased the levels of LAP in serum (oxytocinase) and AP-A in serum and membrane fractions of placenta [36]. We also showed that cortisol increased the activity of AP-N, AP-A and post-proline endopeptidase by using short-cultured human placental tissues [37]. It is known that metalloendopeptidase is inducible by glucocorticoids.

Several researchers have reported that the administration of oxytocin during pregnancy resulted in an increase in oxytocinase in the maternal plasma [38]. Therefore, it is reasonable to presume that the proteases in serum during pregnancy are under the influence of fetoplacental steroids and/or peptide hormones.

III. Physiological Significance of Placental Proteases

A. Mechanisms of onset of labor and transient diabetes insipidus

The pregnant uterus is very sensitive to exogenously infused oxytocin at term compared with the 2nd and 3rd trimesters. Oxytocin is therefore widely used for initiating human labor. The physiological importance of oxytocin for uterine activity in pregnant women has gained much attention following the cloning of the oxytocin receptor [39] and the demonstration of an increase in the number of receptors in term uterus [40, 41]. In addition, the development of specific oxytocin inhibitors with therapeutic effects on preterm labor has further stimulated interest in this field [42].

On the other hand, there was a significant increase in maternal plasma oxytocin with advancing gestation, although pronounced fluctuations in its levels in pregnant women is known [43]. Therefore, the maintenance of gestation despite the increased presence of oxytocin receptors in the uterus, is difficult. In relation to the role of the oxytocin—oxytocinase system in forwarding the onset of labor, the changes in P-LAP (oxytocinase) activities during late pregnancy are interesting and useful for predicting the onset of labor. The mean serum P-LAP levels during the last 28 days of pregnancy showed that P-LAP reached a high 11 days before the onset of labor and did not increase thereafter [43]. Labor may be initiated by an increase in oxytocin release together with a decrease in oxytocin degradation by oxytocinase. It is clear that parturition is a highly regulated phenomenon and likely involves the interplay of many additional factors, but the most reasonable assumption concerning the function of oxytocinase is that it serves to regulate the oxytocin level of maternal plasma and thus prevents premature labor.

The metabolic clearance rate of vasopressin, possibly due to an increase in P-LAP activity during the 2nd and 3rd trimesters, was much higher than in the 1st trimester as well as in nonpregnant women. The increase in the vasopressin disposal rate
may explain the appearance of transient vasopressin-resistant diabetes insipidus during pregnancy [44]

B. Effects of placental proteases on maternal and fetal blood pressure

The administration of AP-N and AP-A purified from human placenta was effective in lowering blood pressure in rats with experimental hypertension induced by the infusion of A-II or renin [45] (Fig. 5B). Placental proteases had an effect on blood pressure via the degradation of A-II in vivo. In addition, the administration of AP-A and AP-N was also effective in lowering the blood pressure of spontaneously hypertensive rats (SHR) [46]. Since ACE inhibitor normalizes the blood pressure of SHR, the renin-angiotensin system may be involved in the high blood pressure of SHR [47]. Therefore the hypotensive effects induced by these two enzymes may be due to A-II degradation by both enzymes.

Although maternal cardiac output increases 40% and circulatory blood volume increases 50% in the late stage of normal human pregnancy, blood pressure remains stable. The circulation of the fetus is also characterized by high cardiac output and blood volume (per kilogram weight) relative to that of the adult, but the mean fetal capillary pressure is 20-40 mm Hg. Since blood pressure is a function of cardiac output and peripheral vascular resistance, the decrease in vascular resistance in the whole body, especially in the uteroplacental circulation, is essential for the maintenance of normal blood pressure during pregnancy.

Uteroplacental circulation consists of the intervillous (retroplacental blood pool) and villous systems. In regard to the intervillous system, the coiled artery, which branches off uterine artery and is found in the decidual part of the placental bed, supplies blood to the retroplacental pool, reaching a flow of 400-500 ml/min near term. It is known that the normal musculoelastic tissue in the vessel wall of the coiled artery is replaced by fibrinous tissue with advancing gestation. Therefore the vascular resistance of the coiled artery is controlled only by uterine contraction which in turn effects the volume of the retroplacental pool.

The villous system, which is supplied with blood from the umbilical blood flow which can reach 350-400 ml/min at term, is best compared with an inverted tree [48]. The regulation of blood pressure is mainly influenced by autoregulation, the autonomic nervous system and the humoral system, but the placenta (uteroplacental circulation) is not capable of autoregulation [49]; it appears to be totally dependent on perfusion pressure. Although the autonomic nervous system in the fetus develops with advancing gestation, fetal end organ response to the autonomic nervous system (in both blood vessels and the heart) is of a much smaller magnitude than the adult response [50, 51]. Blood pressure homeostasis may be more important in the fetus than in the adult, as it determines the level of placental perfusion which then determines the extent of respiratory gas exchange.

The human fetus produces equal or higher levels of various vasoactive peptides, such as A-II, vasopression and somatostatin, compared with the mother [2, 4, 52, 53]. It appears that A-II plays an important role in normal cardiovascular physiology and could play a role in aberrant conditions. Vaspression may be one cause of the rise in blood pressure, fall in heart rate, and redistribution of blood flow that occurs during fetal distress [54]. The use of ACE inhibitors in human pregnancy is known to cause intrauterine growth retardation (IUGR) and severe disturbance of fetal and neonatal renal dysfunction due to severe drug-induced fetal hypotension: this strongly suggests the involvement of placental proteases, such as ACE and their substrates such as A-I and BK and/or products thereof, in the maintenance of uteroplacental circulation [55]. With regard to the mechanism for the maintenance of uteroplacental circulation, it is reasonable to speculate that the vascular resistance of the intervillous and villous systems is at least partly controlled by vasoactive peptides; the concentration of peptides controlled by the production in the fetal site and the degradation by placental proteases may directly affect the uteroplacental circulation (Fig. 6).

IV. Involvement of Placental Proteases in Pre-eclampsia

Although human and animal pregnancy is normally associated with a refractory response to the pressor effect of exogenously infused A-II, patients with pre-eclampsia as well as nonpregnant women are sensitive to the pressor effect of A-II; this
phenomenon has been studied as one of the potential causes of pre-eclampsia [56]. In contrast to A-II, we found that there existed a hypersensitivity to the depressor action of BK in pregnant rats [57]. There is evidence that placental proteases effect the altered response of pregnant women to exogenously infused peptide hormones via their degradation. Actually we have shown that the decreased pressor responsiveness to A-II in pregnancy is caused partly by increased inactivation of A-II by AP-A and AP-N in rats [58].

Higher levels in the fetus of A-II at pre-eclampsia [2], and vasopressin at hypoxemia [4] than in normal pregnancy may result in changes in uteroplacental resistance. The passage of vasoactive peptides from the fetus to maternal sites may result in the reduction of the retroplacental pool due to uterine contraction. We found interesting patterns of changes in the P-LAP of patients with pre-eclampsia. Serial measurements of P-LAP activity in patients with severe pre-eclampsia showed a maximum level at week 31, where the values were significantly higher than in normal pregnancy, and at that stage patients were mildly pre-eclamptic. After week 35, the activity decreased sharply to week 40, and the activity in patients with severe pre-eclampsia during weeks 39 and 40 was much weaker than in normal pregnancy [59] (Fig. 7).

Since the effects of maternal serum P-LAP and AP-A might reflect the production rate in the placenta, the decreased serum proteases in severe...
 ROLE OF PLACENTAL PROTEASES IN PATHOPHYSIOLOGY OF PREGNANCY

pre-eclampsia suggest an increase in vascular resistance in uteroplacental circulation via decreases in the breakdown of hypertensive peptides such as A-II and vasopressin.

On the other hand, we also found another interesting pattern of changes in kininase I for patients with pre-eclampsia. The kininase I activity in severe pre-eclampsia was higher than that in normal pregnancy [32]. Since maternal serum kininase I activity may reflect the production rate in the placenta, the increased serum kininase I in severe pre-eclampsia suggested that vascular resistance increases in uteroplacental circulation via an increase in the breakdown of hypotensive peptide, BK.

It would be interesting to know whether changes in maternal serum proteases, which degrade vasoactive peptides, reflect the changes in uteroplacental circulation via regulation of the concentrations of those peptides in the uteroplacental circulation. The Doppler technique provides a good index of placental blood flow resistance. Campbell et al. showed that pre-eclampsia patients are associated with an increase in the ratio of peak systolic over least diastolic (S/D) pressure measured from the uterine or umbilical artery [60]. We found significant correlations between the S/D ratio of the uterine or umbilical artery assessed by the Doppler technique and the levels of maternal serum proteases in pre-eclampsia. While kininase I was positively correlated with the S/D ratio, P-LAP and AP-A were negatively correlated with the S/D ratios. These correlations in pre-eclampsia might therefore indicate the changes in vascular resistance in the uteroplacental circulation via changes in the vasoactive peptides concentrations due to degradation by placental proteases [61].

V. Possible Role of Placental Proteases in Immune System during Pregnancy and Effect on Fetal Growth

Accumulating evidence supports the hypothesis that cellular proteases play an important role in the communication among cells in the immune system [62]. It has been suggested that many immunomodulator peptides present in thymic and splenic extracts, such as thymopoietin [63] and spleenin [64], and tuftsin [65], influence the immune system. Recently a possible link between the endocrine and immune systems has been shown: these include derivatives of pro-opiomelanocortin such as Met-enkephalin [66], and also somatostatin [67] and tachykinin [68], which are known to be present in umbilical blood [52]. As previously mentioned, we found that AP-N hydrolyzes these peptides and various immunomodulating peptides in vitro. Therefore not only placental membrane proteases identified as CD, such as AP-N (CD13), depeptidyl peptidase IV (CD26) [69] and endopeptidase 24.11 (CD10) [70], but also AP-A and AP-P in placental membranes may be involved in the immune system during pregnancy by regulating the action of immunomodulating peptides.

Previously we found that the administration of bestatin, a specific inhibitor of AP-N and AP-B, to pregnant rats resulted in growth-retarded fetuses: placental protease might play an important role in fetal growth [71].

Although about a quarter of a century ago we initiated this research as a means of providing a placental function test, at present the research field of placental proteases may involve not only the pathophysiology of pregnancy i. e. onset of labor and pre-eclampsia, but also the immunology of pregnancy.

Acknowledgments

We thank Miss H. Hayashi for her excellent typing of this manuscript. This work was supported in part by a grant (05454444) from the Ministry of Education, Science and Culture of Japan.

References

31. Mizutani S, Yamada R, Kurauchi O, Ito Y, Narita...
ROLE OF PLACENTAL PROTEASES IN PATHOPHYSIOLOGY OF PREGNANCY

