Rederivation of Mice by Means of In Vitro Fertilization and Embryo Transfer

Hiroshi SUZUKI, Keigo YOROZU, Toshihiko WATANABE, Masao NAKURA, and Jiro ADACHI

Chugai Pharmaceutical Co., Ltd. and Present address: Laboratory of Molecular Genetics and Embryology, CSK Research Park INC., 1–135 Komakado, Gotemba, Shizuoka 412, Japan

Abstract: In vitro fertilization and embryo transfer were performed for rederivation of four strains of mice harbouring mouse hepatitis virus (MHV) and/or Pasteurella pneumotropica (P. pneumotropica). Superovulated oocytes were fertilized by preincubated cauda epididymis sperm in vitro. Fertilized eggs at 2-cell stage were transferred into the oviducts of specific pathogen free (SPF) recipients. Microbial examination of sperm and/or oocyte donors verified the presence of P. pneumotropica and/or of antibodies to MHV in all strains, but neither in the recipients nor in the offspring antibodies to MHV could they be detected. The results indicate that an in vitro fertilization-embryo transfer (IVF-ET) system is an effective and simple alternative to cesarean operation in infected mice.

Key words: embryo transfer, in vitro fertilization, rederivation

Introduction

New strains of SPF mice are generally obtained by cesarean section of conventional or infected pregnant females prior to parturition. After the operation, delivered fetuses are nursed by a foster mother confirmed as SPF. However, since some viral [2, 6] as well as bacterial [4, 5, 9] infections can be transmitted vertically, the cesarean operation-fostering system is not completely reliable.

P. pneumotropica, which is reported to be potential respiratory and/or occasionally supplicative pathogen, was identified in uterus [3, 9] and vagina [11, 20] and has also been isolated from the feces of animals [7]. Fetuses could therefore be infected by this organism during a cesarean hysterectomy. Flynn et al. [3] have reported a high frequency of this infection in mice originally delivered by cesarean operation. Transplacental transmission of MHV to fetuses has also been demonstrated by intravenous inoculation of pregnant mothers [6]. Moreover, Carthew et al. [2] have reported that embryos collected from donors experimentally infected with MHV were not infected, but the flushing from the uterine horns was contaminated with the virus. Consequently, many investigators have attempted embryo transfer (ET) to rederive laboratory animals known to harbour pathogens [1, 2, 8–10, 15].

In vitro fertilization (IVF) has been frequently used for treatment of sterility in humans; to improve the...
quality and increase production in cattle. In laboratory animals, IVF has been used for analysis of fertilization events and to ameliorate defects in the reproductive ability of mutant [13, 14, 21] or aged mice [16]. In this study, we attempted to apply the IVF-ET system for rederivation of mice contaminated with MHV and/or *P. pneumotropica*.

Materials and Methods

Animals: Two inbred strains of mouse (C57BL/KsJ and KK-A) and two transgenic mouse strains (Tgm-S and Tgm-A) were introduced from other holders and known to be contaminated with MHV and/or *P. pneumotropica*. These animals were housed in a quarantine unit of our facility before rederivation. SPF KK (Kiwa, Japan) and C57BL/6J (CLEA, Japan) mice were used as oocytes donors for IVF and ICR mice (CLEA, Japan) were used as pseudopregnant recipients for embryo transfer. These mice were maintained in a barrier unit. Animals in both quarantine and barrier units were kept at 24 ± 2°C with a relative humidity of 50 to 60% under a lighting regimen of 14L: 10D (lights on 05:00 a.m. to 19:00 p.m.), and air was exchanged 12 to 15 times/hr. Mice were housed in polycarbonate cages (TP-106; 175 × 245 × 125 mm, TP-102; 215 × 320 × 140 mm, TOYO RIKO, Japan) and were allowed access to standard laboratory chow (CA-1; CLEA, Japan) and tap-water.

Rederivation procedure: As shown in the flow chart in Fig. 1, the rederivation procedure in this study was composed of three clean zone phases which utilize four laboratory or animal room units. To avoid contamination, each unit was separately located. IVF, culture of eggs and ET were performed at an embryo manipulation laboratory in a barrier unit. Male and female

Fig. 1. Experimental procedures for rederivation by means of *in vitro* fertilization and embryo transfer.
reproductive organs were excised from infected mice in the quarantine unit and were transferred to the embryo manipulation laboratory. After receiving embryos, recipients were transferred to an animal room and were allowed to deliver at full term. After confirmation of SPF, offsprings were transferred to the animal room for breeding. Microbial examination was conducted in a quarantine unit.

In vitro fertilization and embryo transfer: C57BL/KsJ, KK and C57BL/6J females were superovulated with 5 IU of PMSG (Serotropin; Teikoku Hormone Mfg. Co., Japan) and 5 IU of hCG (Puberogen; Sankyo, Japan) injected 48 hr apart. At 15 to 16 hr after the hCG injection, the females were sacrificed and their reproductive organs were excised in a safety cabinet. To avoid bleeding, each vessel with tissues was ligated in advance. The reproductive organs were exposed in 0.3% benzalkonium chloride solution (Osaban; Nippon Seiyaku, Japan) for 30 sec and rinsed with saline twice. The oviducts were excised on sterilized filter paper and transferred into a dish covered with paraffin oil (Art 7162; Merck, USA) equilibrated overnight at 37°C in 5% CO₂ in air. The ampullar region of oviducts was torn with a pair of needles, and oocytes surrounded by cumulus cells were introduced into 0.4 ml of TYH medium [18] on a dish. Prior to obtaining the oocytes, male mice were sacrificed by cervical dislocation and their reproductive organs were removed. After washing the organs by an aseptic technique in a similar procedure to that used for females, sperm was collected from the cauda epididymis and suspended in 0.4 ml of TYH medium. After preincubation of the sperm for 2 hr, IVF was performed by adding a small volume (3–5 μl) of the sperm suspension to the medium containing eggs (150 cells/μl). At 6 hr after insemination, fertilized eggs were transferred to 0.4 ml of Whitten’s medium [19] supplemented with 100 μM EDTA, and cultured at 37°C with 5% CO₂ in air. At 24 hr after insemination, 2-cell stage embryos were transferred into oviducts of ICR recipients on 0.5 day post-coitum as described in a previous report [17].

Microbial examination: To confirm the rederivation of the contaminated animals, microbial examination was performed by detection of serum antibody to MHV and by isolation of P. pneumotropica.

Nasal swabs (from male and female donors, recipients, and their offsprings at 8 weeks old), sperm suspension, homogenized cauda epididymis, and media for IVF and washing were inoculated onto Tripticate soy agar (BBL Microbiological System, Cockeysville, Md., USA) supplemented with 5% of horse blood (Nippon Seibutsu Zaiyo Center, Japan) and then were cultured at 37°C for 48 hr. Isolated organisms were identified by colonial morphology, motility, staining characteristics, agglutination reaction using anti-serum and appropriate biochemical tests.

The presence of the serum antibody to MHV in male and female donors, recipients and their offsprings at 8 weeks of age was examined by complement fixation (CF) reaction using commercial antigen (MHV-antigen; Labocheck Seiken, Denkaseiken, Japan) and a kit (CF-KIT Seiken, Denkaseiken, Japan). Mouse antibody production (MAP) assay was also performed as described below. 0.5 ml of the homogenized cauda epididymis, sperm suspension and IVF media were inoculated into SPF C57BL/KsJ-dbm mice (bred in our colony) by intraperitoneal injection. Blood samples were recovered from the postcava of the inoculated mice under ether anesthesia at 4 weeks after the injection. Sera were examined by CF reaction as described above.

Results

Four strains of introduced mice were known to be contaminated with MHV and/or P. pneumotropica but not with other pathogens, viz. Sendai virus, Mycoplasma pulmonis, Tyzzer’s organism, Corynebacterium kutscheri, Bordetella bronchiseptica, Escherichia coli 0-115, Salmonella spp., Streptococcus pneumoniae, Dermatophytes and Syphacia spp.

Results of IVF and ET are shown in Table 1. Fertilization at 6 hr after insemination of C57BL/KsJ, KK-A°, Tgm-S and Tgm-A occurred at a frequency of 38%, 62%, 84% and 94%, respectively. Subsequent ET at the 2-cell stage of these respective strains developed into newborns with 14%, 16%, 55% and 61% success.

On the course of the IVF, detection of MHV antibody and isolation of P. pneumotropica from several specimens of the contaminated donors were carried out. As shown in Table 2, all of the mouse strains tested were demonstrated to be harbouring MHV and/or P. pneumotropica, but no pathogens were detected from
Table 1. Results of in vitro fertilization and embryo transfer

<table>
<thead>
<tr>
<th>Strain</th>
<th>Male (N=)</th>
<th>Female (N=)</th>
<th>In vitro fertilization</th>
<th>Embryo transfer</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td>No. of fertilized/ no. of examined (%)</td>
<td>Mean no. of fertilized eggs</td>
</tr>
<tr>
<td>C57BL/KsJ</td>
<td>1 (1)</td>
<td>C57BL/KsJ</td>
<td>97 / 254 (38)</td>
<td>5.1</td>
</tr>
<tr>
<td>KK-A</td>
<td>2 (2)</td>
<td>KK</td>
<td>778 / 1294 (62)</td>
<td>25.1</td>
</tr>
<tr>
<td>Tgm-S</td>
<td>3 (4)</td>
<td>C57BL/6J</td>
<td>1055 / 1231 (84)</td>
<td>19.5</td>
</tr>
<tr>
<td>Tgm-A</td>
<td>4 (4)</td>
<td>C57BL/6J</td>
<td>1137 / 1211 (94)</td>
<td>21.1</td>
</tr>
</tbody>
</table>

Table 2. Microbial examination of donor mice for oocytes and sperm

<table>
<thead>
<tr>
<th>Microbial exam. specimen</th>
<th>C57BL/KsJ</th>
<th>KK-A</th>
<th>Tgm-S</th>
<th>Tgm-A</th>
</tr>
</thead>
<tbody>
<tr>
<td>MHV antibodies</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Serum</td>
<td>0/5(1)</td>
<td>4/4</td>
<td>3/4</td>
<td>1/4</td>
</tr>
<tr>
<td>Cauda epididymis*</td>
<td>NT(2)</td>
<td>0/3</td>
<td>NT</td>
<td>NT</td>
</tr>
<tr>
<td>Sperm suspension*</td>
<td>NT</td>
<td>0/3</td>
<td>NT</td>
<td>NT</td>
</tr>
<tr>
<td>Fertilization media*</td>
<td>NT</td>
<td>0/4</td>
<td>NT</td>
<td>NT</td>
</tr>
<tr>
<td>Isolation of P. pneumotropica</td>
<td>10/10</td>
<td>1/2</td>
<td>0/4</td>
<td>0/4</td>
</tr>
<tr>
<td>Nasal swab</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Cauda epididymis</td>
<td>NT</td>
<td>0/3</td>
<td>NT</td>
<td>NT</td>
</tr>
<tr>
<td>Sperm suspension</td>
<td>0/1</td>
<td>0/3</td>
<td>0/2</td>
<td>0/2</td>
</tr>
<tr>
<td>Fertilization media</td>
<td>0/2</td>
<td>0/2</td>
<td>NT</td>
<td>NT</td>
</tr>
<tr>
<td>Washing media</td>
<td>0/3</td>
<td>NT</td>
<td>NT</td>
<td>NT</td>
</tr>
</tbody>
</table>

1) No. of positive/no. of examined. 2) Not tested. *: The specimens were examined by MAP assay. See text.

Table 3. Results of microbial examinations in recipients and offsprings

<table>
<thead>
<tr>
<th>Specific pathogens</th>
<th>C57BL/KsJ</th>
<th>KK-A</th>
<th>Tgm-S</th>
<th>Tgm-A</th>
</tr>
</thead>
<tbody>
<tr>
<td>MHV-antibodies</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1) Recipient. 2) Offsprings. 3) No. of positive/no. of examined. These animals were also confirmed to be negative for Sendai virus, Mycoplasma pulmonis, Tyzzer's organism, Corynebacterium kutscheri, Bordetella bronchiseptica, Escherichia coli 0-115, Salmonella spp., Streptococcus pneumoniae, Dermatophytes and Syphacia spp.</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>P. pneumotropica</td>
<td>0/3(1)</td>
<td>0/6</td>
<td>0/10</td>
<td>0/5</td>
</tr>
</tbody>
</table>

These animals were also confirmed to be negative for Sendai virus, Mycoplasma pulmonis, Tyzzer's organism, Corynebacterium kutscheri, Bordetella bronchiseptica, Escherichia coli 0-115, Salmonella spp., Streptococcus pneumoniae, Dermatophytes and Syphacia spp. |

the homogenized cauda epididymides, sperm suspension or fertilization media even in MAP assay. When the homogenized cauda epididymides were cultured on Triptisoy agar, some gram positive bacteria such as Staphylococcus spp., Bacillus spp. and Lactobacillus spp. were found, but no bacterial growth was observed in the other samples including sperm suspension, in which cauda sperm was suspended in antibiotics-free TYH medium.

Results of microbial examination after derervation by IVF-ET are shown in Table 3. A total of 10 recipients and 50 offsprings of four mouse strains were consistently negative for MHV antibody and P. pneumotropica. These mice were confirmed to be free from the other pathogens described above.
Discussion

When producing SPF animals, the cesarean operation-fostering system is usually applied to prevent pathogens. However, this method is considered unreliable, because some pathogens including MHV and *P. pneumotropica* transmit vertically from the mother to the fetus [3, 6]. If uterine infection occurs, even without infection of the embryo, fetuses could easily become contaminated with infected maternal fluid during surgical delivery.

In the IVF-ET system, contamination in oviducal or uterine fluid with MHV and *P. pneumotropica* can be eliminated by repeated washing the eggs in fresh medium [2, 12]. Furthermore, as shown in Table 1, the results indicated that the intra-cauda epididymis harboured neither *P. pneumotropica* nor MHV, even in infected animals. It is less likely that the embryos will be infected with pathogens except when pathogens penetrate the zona pellucida surrounding the oocyte and/or plasma membrane. We suggest that our culture conditions facilitated the elimination of pathogens. Hill and Stalley [5] have described that *Mycoplasma pulmonis* adhere to zona pellucida and may possibly penetrate its extra cellular matrix, but *Mycoplasma pulmonis* was inoculated into mouse embryo culture medium M16 and incubated at 37°C, *Mycoplasma pulmonis* was not detected in media after 24 hr. This was probably because of increased acidity in the culture media which potentially causes unfavorable conditions for *Mycoplasma pulmonis* growth [5]. Temporary exposure of zona-intact embryos to MHV had no detrimental effects on further development in vitro, whereas MHV-exposed zona-free embryos had degenerated within 24 hr of culture [9]. To avoid transfer of infected embryos, as in the present study, it is recommended that fertilized eggs are cultured for at least 24 hr prior to embryo transfer. In the present study, we used TYH and Whitten’s medium containing antibiotics such as penicillin and streptomycin. This is likely to facilitate effective decontamination of sperm and oocytes suspended in culture media as the antibiotics can surround the individual cells in suspension. Furthermore, it has been reported that brief exposure of trypsin (0.25% trypsin, pH 7.6–7.8, for 60–90 sec), is effective in inactivating/removing infectious bovine rhinotracheitis virus (IBRV) and vesicular stomatitis virus (VSV) from bovine embryos, and pseudorabies virus (PrV), hog cholera virus (HCV) and VSV from porcine embryos [12]. We therefore propose an approach to avoid the vertical transmission of diseases.

Application of IVF to control disease and breeding in animals is advantageous because many eggs can be fertilized from a single male at once and the day of birth can be easily controlled. In fact, as shown in Table 1, only 11 males fertilized 3,047 oocytes from 154 females. Thus the IVF-ET system also has advantages for mass production of mice in less time when compared to natural mating.

Acknowledgments

The authors wish to express their gratitude to Dr P. Kowalski-Saunders for his suggestions concerning the manuscript.

References

615.