In Vitro Manipulation of Nonhuman Primate Gametes for Embryo Production and Embryo Transfer

Tadashi SANKAI

Tsukuba Primate Center, National Institute of Infectious Diseases, Hachimandai-1, Tsukuba, Ibaraki 305-0843, Japan

Abstract: Since nonhuman primates are closely related to humans and share many physical similarities, they are important for use in research areas such as human infectious diseases, reproduction, physiology, endocrinology, metabolism, neurology and longevity. To develop and maintain these animals, we must establish techniques for in vitro manipulation of spermatozoa and eggs. For a decade my research group has been conducting basic research to establish embryo manipulation techniques and to clarify the reproductive phenomena in nonhuman primates. This article summarizes the past research on in vitro manipulation of nonhuman primate gametes, from collection of reproductive cells and in vitro fertilization to the birth of offspring after embryo transfer, as well as the current status of these research areas. The studies summarized here will directly lead to the development of standard techniques for practical and comprehensive use in nonhuman primates.

Key words: embryo, in vitro manipulation, nonhuman primate, spermatozoa

Introduction

The field of embryo manipulation has widespread applications: to improve the reproductive efficiency of animals in captivity, to improve specific pathogen-free properties of domestic and laboratory animals, and to improve the production of laboratory animals for use as human-disease models. Reproductive techniques developed for such purposes are also applicable to...
maintaining the genetic resource of endangered wild animals.

Nonhuman primates are very important animals for use in research on human infectious diseases because they are closely related to humans and share many physical and biological similarities. For the same reasons, they are also important in research on reproductive physiology, endocrinology, metabolism, and neurology. Furthermore, because of their long life span, they can be useful for research on longevity. To develop and maintain these important animal research resources, we must establish techniques for the \textit{in vitro} manipulation of spermatozoa and eggs. The chronology of the principal progress made in this research area is shown in Table 1.

For a decade, my research group in reproductive technology, at the Tsukuba Primate Center, National Institute of Infectious Diseases [36, 37], has been conducting basic research to establish embryo manipulation techniques and to clarify the mechanisms of fertilization and development of preimplantation embryos in nonhuman primates. This article summarizes our past and present studies on the quality of fresh and frozen-thawed spermatozoa, \textit{in vitro} maturation (IVM) of germinal-vesicle stage oocytes, \textit{in vitro} fertilization (IVF), intracytoplasmic sperm injection (ICSI), and embryo transfer (ET).

\textbf{Sperm Processing}

1. Sperm collection

Many methods have been attempted for the collection of nonhuman primate spermatozoa [14, 29, 35, 38, 50, 61, 62, 98, 118]. Of these, the two most commonly used methods are collecting from ejaculate semen and from the epididymis. My research group has collected fresh semen from sexually mature male cynomolgus monkeys (\textit{Macaca fascicularis}) by rectal stimulation with an electrode. This method has the potential for obtaining semen from any male. Although the semen is collected in trace amounts only, the volume is usually sufficient for use in IVF and ICSI. We have also collected epididymal spermatozoa from the epididymis after death. In this method, the epididymides were removed after euthanasia and then the tails of the epididymides were minced in medium and incubated for approximately 10 min in an atmosphere of humidified 5% CO\textsubscript{2} and 95% air. The sperm suspension is poured on top of 90% Percoll in a disposable tube and then centrifuged at 800 X g for 10 min. A large quantity of spermatozoa with good motility can be collected from the resulting sediment. To collect spermatozoa with good motility, it is best to collect sperm as soon as possible after removal of the epididymis but we succeeded in collecting such spermatozoa up to 24 hr after removal by keeping the epididymides in mineral oil at 5°C. This storage procedure was successfully applied to Japanese monkeys (\textit{Macaca fuscata}). The fertility of the spermatozoa was confirmed by an IVF examination [83]. We also developed a rota-cut needle used for testicular biopsies in cynomolgus monkeys. This needle makes it easy to collect cells from testis [57]. We are using such biopsied cells in basic studies, such as direct cell injection into eggs [44, 67, 70].

2. Sperm quality \textit{in vivo} and \textit{in vitro}

Although spermatozoa show active progressive motility immediately after collection, they are not capable of fertilizing eggs. The spermatozoa ejaculated into a vagina acquire the capacity to penetrate the eggs after physiological and biochemical changes caused by traveling into the oviduct. Sperm capacitation \textit{in vivo} is well known, and females became impregnated when artificially inseminated with semen collected by rectal electrode stimulation.

When spermatozoa are used \textit{in vitro}, the quality of the spermatozoa (e.g., capacitation, acrosome reaction, interaction with zona pellucida, penetration) must be accurately assessed [106, 107]. Sperm quality \textit{in vitro}, such as motility and intensity, was discussed in the previous report [59]. To evaluate sperm quality, my research group is currently reprogramming an objective analysis system (video image processing with a computer), originally developed for human sperm analysis, for use with cynomolgus monkey spermatozoa.

The medium used for nonhuman primate spermatozoa \textit{in vitro} must be optimal for that particular species. Among the several types of media reported, my research group selected TYH medium [103], which was developed for IVF of mouse eggs. Furthermore, by incubation of the spermatozoa in medium that contained caffeine and dibutyryl cyclic AMP, sperm capacitation and hyperactivated motion were induced in spermatozoa of the rhesus monkey (\textit{Macaca mulatta}) [11], the
Table 1. Principal chronology in the 1970s, 1980s and 1990s on *in vitro* manipulation of nonhuman primate gametes

<table>
<thead>
<tr>
<th>Year</th>
<th>Investigator (Ref. No.)</th>
<th>Monkey species</th>
<th>Research area (key words)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1972</td>
<td>Leverage et al. (55)</td>
<td>Rhesus</td>
<td>sperm cryopreservation</td>
</tr>
<tr>
<td>1973</td>
<td>Gold et al. (30)</td>
<td>Squirrel</td>
<td>IVF, 2-cell</td>
</tr>
<tr>
<td>1974</td>
<td>Cho et al. (16)</td>
<td>Cynomolgus</td>
<td>sperm cryopreservation, artificial insemination</td>
</tr>
<tr>
<td>1976</td>
<td>Denis et al. (19)</td>
<td>Squirrel</td>
<td>sperm cryopreservation</td>
</tr>
<tr>
<td>1978</td>
<td>Mahone et al. (60)</td>
<td>Cynomolgus</td>
<td>sperm cryopreservation</td>
</tr>
<tr>
<td>1979</td>
<td>Gould (27)</td>
<td>Baboon</td>
<td>IVF</td>
</tr>
<tr>
<td>1979</td>
<td>Kuehl et al. (48)</td>
<td>Squirrel</td>
<td>IVF, cleavage</td>
</tr>
<tr>
<td>1982</td>
<td>Kreitmann et al. (47)</td>
<td>Cynomolgus</td>
<td>IVF, early morula</td>
</tr>
<tr>
<td>1983</td>
<td>Dukelow et al. (20)</td>
<td>Squirrel</td>
<td>IVF</td>
</tr>
<tr>
<td>1983</td>
<td>Bavister et al. (8)</td>
<td>Rhesus</td>
<td>IVF, early morula</td>
</tr>
<tr>
<td>1983</td>
<td>Gould (28)</td>
<td>Chimpanzee</td>
<td>IVF, 4-cell</td>
</tr>
<tr>
<td>1984</td>
<td>Boatman et al. (11)</td>
<td>Rhesus</td>
<td>sperm capacitation in vitro</td>
</tr>
<tr>
<td>1984</td>
<td>Clayton et al. (17)</td>
<td>Baboon</td>
<td>IVF, offspring</td>
</tr>
<tr>
<td>1984</td>
<td>Pope et al. (75)</td>
<td>Baboon</td>
<td>embryo cryopreservation, offspring</td>
</tr>
<tr>
<td>1984</td>
<td>Bavister et al. (7)</td>
<td>Rhesus</td>
<td>IVF, offspring</td>
</tr>
<tr>
<td>1986</td>
<td>Balmaceda et al. (5)</td>
<td>Cynomolgus</td>
<td>IVF, offspring</td>
</tr>
<tr>
<td>1986</td>
<td>Balmaceda et al. (4)</td>
<td>Cynomolgus</td>
<td>IVF, embryo cryopreservation, offspring</td>
</tr>
<tr>
<td>1988</td>
<td>Lopata et al. (58)</td>
<td>Marmoset</td>
<td>IVF, blastocyst, offspring</td>
</tr>
<tr>
<td>1989</td>
<td>Gould et al. (31)</td>
<td>Chimpanzee</td>
<td>sperm cryopreservation</td>
</tr>
<tr>
<td>1989</td>
<td>Fujisaki et al. (24)</td>
<td>Cynomolgus</td>
<td>IVF, morula</td>
</tr>
<tr>
<td>1989</td>
<td>Cranfield et al. (18)</td>
<td>Pig-tailed</td>
<td>IVF, early cleavage stage</td>
</tr>
<tr>
<td>1989</td>
<td>Wolf et al. (115)</td>
<td>Rhesus</td>
<td>IVF, embryo cryopreservation, offspring, hatched blastocyst</td>
</tr>
<tr>
<td>1989</td>
<td>Huntress et al. (38)</td>
<td>Gorilla</td>
<td>IVF</td>
</tr>
<tr>
<td>1990</td>
<td>Tolmer et al. (100)</td>
<td>Cynomolgus</td>
<td>sperm cryopreservation, artificial insemination</td>
</tr>
<tr>
<td>1990</td>
<td>Gould (29)</td>
<td>Chimpanzee, Gorilla</td>
<td>gamete collection, sperm cryopreservation</td>
</tr>
<tr>
<td>1990</td>
<td>Lanzendorf et al. (54)</td>
<td>Rhesus</td>
<td>IVF, embryo cryopreservation, twins</td>
</tr>
<tr>
<td>1991</td>
<td>Morgan et al. (66)</td>
<td>Rhesus</td>
<td>IVM, IVF</td>
</tr>
<tr>
<td>1991</td>
<td>Sankai et al. (79)</td>
<td>Cynomolgus</td>
<td>IVF, blastocyst</td>
</tr>
<tr>
<td>1991</td>
<td>Lambert et al. (49)</td>
<td>Gorilla</td>
<td>sperm cryopreservation, hamster test</td>
</tr>
<tr>
<td>1992</td>
<td>Lanzendorf et al. (53)</td>
<td>Gorilla</td>
<td>partial zona dissection, frozen-thawed spermatozoa</td>
</tr>
<tr>
<td>1993</td>
<td>Sankai et al. (81)</td>
<td>Cynomolgus</td>
<td>dead female, IVM, IVF</td>
</tr>
<tr>
<td>1993</td>
<td>Seier et al. (90)</td>
<td>African green</td>
<td>sperm cryopreservation</td>
</tr>
<tr>
<td>1993</td>
<td>Wilton et al. (112)</td>
<td>Marmoset</td>
<td>IVM, IVF, 32-cell</td>
</tr>
<tr>
<td>1994</td>
<td>Alak et al. (2)</td>
<td>Rhesus</td>
<td>IVM</td>
</tr>
<tr>
<td>1994</td>
<td>Sankai et al. (84)</td>
<td>Cynomolgus</td>
<td>sperm cryopreservation, IVF, hatched blastocyst</td>
</tr>
<tr>
<td>1994</td>
<td>Zhang et al. (123)</td>
<td>Rhesus</td>
<td>IVF, developmental culture, hatched blastocyst</td>
</tr>
<tr>
<td>1995</td>
<td>Joslin et al. (42)</td>
<td>Orangutan</td>
<td>IVF</td>
</tr>
<tr>
<td>1995</td>
<td>Thomson et al. (99)</td>
<td>Rhesus</td>
<td>embryonic stem cell</td>
</tr>
<tr>
<td>1996</td>
<td>Lanzendorf et al. (51)</td>
<td>Cynomolgus</td>
<td>IVM, IVF, blastocyst</td>
</tr>
<tr>
<td>1997</td>
<td>Sankai et al. (78)</td>
<td>African green</td>
<td>IVF, expanded blastocyst</td>
</tr>
<tr>
<td>1997</td>
<td>Sankai et al. (83)</td>
<td>Japanese</td>
<td>sperm cryopreservation, IVF, 8-cell</td>
</tr>
<tr>
<td>1997</td>
<td>Sankai et al. (85)</td>
<td>Red-bellied tamarin</td>
<td>IVM</td>
</tr>
<tr>
<td>1997</td>
<td>Pope et al. (72)</td>
<td>Gorilla</td>
<td>IVF, frozen-thawed spermatozoa, offspring</td>
</tr>
<tr>
<td>1997</td>
<td>Meng et al. (63)</td>
<td>Rhesus</td>
<td>nuclear transfer, offspring</td>
</tr>
<tr>
<td>1998</td>
<td>Ogonuki et al. (67)</td>
<td>Cynomolgus</td>
<td>ICSI, partial zona dissection, morula</td>
</tr>
<tr>
<td>1998</td>
<td>Hewitson et al. (34)</td>
<td>Rhesus</td>
<td>ICSI, hatched blastocyst</td>
</tr>
<tr>
<td>1999</td>
<td>Wolf et al. (113)</td>
<td>Rhesus</td>
<td>nuclear transfer, fibroblast, embryonic stem cell, cleavage</td>
</tr>
<tr>
<td>1999</td>
<td>Hewitson et al. (33)</td>
<td>Rhesus</td>
<td>ICSI, offspring</td>
</tr>
<tr>
<td>2000</td>
<td>Torii et al. (101)</td>
<td>Japanese</td>
<td>IVF, offspring</td>
</tr>
</tbody>
</table>
pig-tailed monkey (Macaca nemestrina) [18], and the cynomolgus monkey [5, 56]. Our study also confirmed this finding in cynomolgus monkeys [84], Japanese monkeys [83], and African green monkeys (Cercopithecus aethiops) [78]. This finding in vitro may be characteristic of nonhuman primate spermatozoa. For cynomolgus monkeys, the presence of hyperactivated spermatozoa was observed after incubation for 6 to 8 hr, and the fertility of these spermatozoa was confirmed by IVF examination. Changes in the sperm acrosome or the plasma membranes were also observed by electron microscopy (Fig. 1-A, B). For African green monkeys, hyperactivation was induced with an incubation time shorter than that for cynomolgus monkeys, and the spermatozoa incubated for 4 to 6 hr were able to fertilize eggs in vitro [78]. Sperm quality is known to differ according to the animal species, and, as we expected, our experimental results showed such differences among the various species of nonhuman primates.

3. Cryopreservation of spermatozoa

Reproductive technologies such as sperm cryopreservation are necessary to maintain the genetic resources of valuable experimental-model animals as well as those of endangered nonhuman primates. Among the more than 200 species of nonhuman primates, only a few have been used for sperm cryopreservation studies. Successful freezing of spermatozoa has been reported for cynomolgus monkeys [15, 16, 60, 100], rhesus monkeys [55, 77], baboons (Papio anubis) [46], squirrel monkeys (Saimiri sciureus) [19], African green monkeys [90], chimpanzees (Pan troglodytes) [31], and gorillas (Gorilla gorilla gorilla) [38, 49]. To freeze spermatozoa from cynomolgus monkeys, we prepared a semen-diluting medium, TTE (Tes, Tris, egg yolk base) [84]. After being frozen in TTE medium and glycerol and then thawed, spermatozoa with high motility were obtained. The quality of this frozen-thawed spermatozoa was determined by means of a zona pellucida penetration assay [116]. It is known that only capacitated spermatozoa can penetrate the zona pellucida when kept in a highly concentrated salt solution. In our zona pellucida penetration assay, frozen-thawed spermatozoa that were preincubated for 2 hr penetrated the zona pellucida, whereas fresh spermatozoa preincubated for the same time did not. Furthermore, these 2 hr preincubated frozen-thawed spermatozoa were capable of fertilization by IVF examination, whereas the 2 hr preincubated fresh spermatozoa were not. This suggests that our freeze-thaw method may damage the plasma membranes of spermatozoa and induce acrosome reaction-like changes [84]. By electron microscopy, we confirmed the morphological changes in frozen-thawed spermatozoa; the acrosome was swollen or vesiculated immediately after thawing (Fig. 1-C) (Okada et al., manuscript in preparation). These findings show that our freeze-thaw method favorably affects the use of IVF examination, because, compared with fresh spermatozoa, the frozen-thawed spermatozoa were capable of fertilization in vitro with shorter preincubation times or without preincubation. Nevertheless when the frozen-thawed spermatozoa are used in vivo, such as in artificial insemination, they are not suitable because they have already shown signs of capacitation or an acrosome reaction.

This sperm cryopreservation technique, established for cynomolgus monkeys, was also tried in Japanese monkeys, African green monkeys, and red-bellied tamarins (Saguinus labiatus). The results of sperm cryopreservation in Japanese monkeys were similar to those for cynomolgus monkeys. Because both these

![Fig. 1. Heads of cynomolgus monkey spermatozoa observed by transmission electron microscopy. (A) Fresh spermatozoa shortly after collection. (B) Fresh spermatozoa incubated for 8 hr. (C) Frozen-thawed spermatozoa immediately after thawing. Scale bar represents 0.5 μm.](image-url)
monkeys belong to the same genus (*Macaca* monkeys), the results suggest that our sperm cryopreservation method can be used for spermatozoa from the same genus. In contrast, African green monkey spermatozoa did not retain their active progressive motility. Although the spermatozoa from red-bellied tamarins retained progressive motility, the motility level was lower than that of cynomolgus monkeys or Japanese monkeys. These results demonstrate that the so-called “freeze-tolerance” of sperm, assessed by their motility, differs among the nonhuman primate species. Many aspects of freeze tolerance therefore need to be clarified for the development of a practical and effective method of sperm cryopreservation for nonhuman primates. This method might then be used for spermatozoa of all animal species.

Attempts have recently been made to study ICSI in nonhuman primates. We have reported the use of ICSI in cynomolgus monkeys [67]. When ICSI is used to create embryos, because the motility of the sperm is not a serious problem, cryopreservation of the sperm to retain motility is not needed. But one of our research aims is to reproduce *in vitro* exactly the same reproductive phenomenon as that seen *in vivo*. Spermatozoa that have retained their motility are therefore essential for such studies.

Oocyte Processing

1. Oocyte collection

Oocytes are usually collected from mammals after the development of multiple follicles has been induced by the administration of hormones. For nonhuman primates, researchers have used eCG (equine chorionic gonadotropin) [12, 18, 24, 41, 65], FSH (follicle-stimulating hormone) [18, 43, 45, 48, 52, 54, 71, 86, 109, 120–122] and hMG (human menopausal gonadotropin) [3, 5, 23, 32, 41–43, 65, 105]. My research group has used eCG, which produced a strong response in ovaries to induce follicle development. Injections of eCG were given intramuscularly eight times during the menstrual cycle (days 3, 5, 7, 9, 11, 12, 13 and 14) to cynomolgus monkeys [84], Japanese monkeys [82, 83] and African green monkeys [78]. Numerous follicles developed after hormone administration (Fig. 2), sometimes over 100 follicles per female. Only one follicle is spontaneously developed in primates. For oocyte maturation, hCG (human chorionic gonadotropin) was also administered intramuscularly on the morning after the last eCG injection. Mature oocytes were surgically collected 28 to 43 hr later: while the animal was under anesthesia, ovaries were exposed through an abdominal incision, and the contents of enlarged follicles were aspirated. This technique for eCG and hCG injections can induce follicle development and is useful for the collection of mature oocytes, but technical problems in preventing the production of antibodies to administered hormones need to be solved [9]. Furthermore, individual differences in the number of developed follicles and collected oocytes must be controlled. The quality of oocytes, which affects the experimental results, will be improved by the choice of administered hormones or perhaps by the timing of administration. Some reports have shown that FSH or hMG administration is better than eCG administration for oocyte collection. We are therefore now using hMG in our studies.

Ovary stimulation of juvenile monkeys has been reported [45], and we have also studied oocyte collection in sexually immature cynomolgus monkeys. Our results show that follicle development can be induced in sexually immature females, irrespective of the menstrual cycle. Only slight individual differences in the number of developed follicles and collected oocytes were evident.

We also collected oocytes from the ovaries of females who had died by accident, and therefore collection
took place at an unspecified time in the menstrual cycle [81], but the quality of the oocytes deteriorated at a faster rate before oocyte collection than in similar recovery of spermatozoa (see section II. 1). Techniques used in IVM were also needed, because most of the collected oocytes were at the GV (germinal vesicle) stage.

2. In vitro maturation (IVM) of oocytes

My research group succeeded in IVM of oocytes collected at the GV stage from cynomolgus monkeys, Japanese monkeys and red-bellied tamarins [80, 81, 85], and such mature oocytes from cynomolgus monkeys were fertilized in vitro. As the maturation medium, we used TCM-199 or CMRL-1066 containing 10% fetal calf serum and supplemented with hCG, FSH or eCG. The resulting cultured GV-stage oocytes matured in 24 to 72 hr. Unfortunately this wide range in the culture period means that there is as yet no practical use for this method, but excellent results have been reported for IVM for metaphase I or GV-stage oocytes from rhesus monkeys [1, 2, 23, 51, 66, 81, 88, 89, 93, 117]. Those studies demonstrated that the techniques used to produce mature oocytes in vitro may be effective in the fertilization of nonhuman primates.

Production of Embryos

1. Collection of embryos fertilized in vivo

Collection of embryos fertilized in vivo in the oviduct or in the uterus is the basis of embryo collection methods. One embryo can be collected from a female mated through a natural menstrual cycle by flushing the oviduct or the uterus via an abdominal incision while the animal is anesthetized. To collect numerous embryos, not only methods to induce follicle development but also methods to induce ovulation must be developed. Methods for the induction of ovulation have been reported [32, 43], and an embryo collection method that involves flushing the entire reproductive tract has been established for the rhesus monkey [25, 26, 91, 92], the baboon [73–75] and the common marmoset (Callithrix jacchus) [95, 96]. For cynomolgus monkeys, the technique for cannulation to the uterus through the cervical canal [102] has been developed, a technique that my research group has successfully used. Because of this technique, the collection of nonhuman primate embryos at the morula or blastocyst stage has become technically feasible. Recently, an embryonic stem cell line was successfully isolated from a rhesus monkey embryo collected by this technique [99].

2. In vitro fertilization (IVF)

Two methods are commonly used to create embryos in vitro; IVF and ICSI. An IVF technique has been developed and successfully used for several types of nonhuman primates [20, 21, 24, 27, 38, 40, 42, 72, 80, 112, 114, 115, 117]. For example, we first reported IVF with frozen-thawed spermatozoa from cynomolgus monkeys, in which the embryo obtained developed to the hatched blastocyst stage [84] (Fig. 3). Furthermore, we first reported using IVF in Japanese monkeys [82, 83] and African green monkeys [78]. In our study of red-bellied tamarins, no eggs became fertilized after insemination in vitro [85] when we used frozen-thawed spermatozoa collected from the epididymis and mature oocytes obtained by in vitro culture of GV-stage oocytes collected from ovaries. Nevertheless the reasons for the lack of fertilization remain unclear, because many examination steps are needed to determine fertilization.

In these IVF studies, difficulties arose in obtaining a sufficient number of gametes from nonhuman primates. This means that experience gained in doing several experiments is needed when judging results and that experiments should be repeated for confirmation and reproducibility.

3. Intracytoplasmic sperm injection (ICSI)

The ICSI technique has been reported for collecting embryos from in vitro in the cynomolgus monkey [67] and the rhesus monkey [33, 34, 64]. For example, my research group first used ICSI in cynomolgus monkeys [67], and we expect that this technique will achieve a fertilization rate higher than that for IVF. Recent studies in reproductive biology on fertilization in mice show that offspring can be obtained by intracytoplasmic injection of spermatid from testis [44, 70]. Although this fertilization phenomenon does not occur naturally, these data provide valuable additional information on testicular cells and eggs. Human offspring have already been obtained by intracytoplasmic injection of spermatid [22]. Although intracytoplasmic injection techniques are useful for preserving the male gene at the cellular level.
MANIPULATION OF NONHUMAN PRIMATE GAMETES

and seem to be a good possibility for gene manipulation as transgenic animals, the effectiveness and safety of the technique needs to be determined [33].

Techniques for the transfer of nuclear material from somatic cells in mammals were recently reported [108, 111]. Nuclear transfer was also tried in the rhesus monkey [63, 113]. We therefore have begun studies on oocyte activation, pronucleus formation, pronucleus fusion and subsequent embryo development.

Embryo Development Culture and Embryo Transfer

1. Embryo development culture

 Establishing techniques for development culture requires embryo manipulations *in vitro*. Various media have been used for embryo development culture. In the rhesus monkey, good results for fertilization and cleavage of oocytes *in vitro* have been reported in about 65 to 80% of mature ova fertilized. Of these eggs from IVF, 95% underwent at least one cleavage division. Approximately 50% of embryos reached the blastocyst stage, with 20% hatching from the zona pellucida [6, 8]. By culturing cynomolgus monkey embryos (obtained by IVF) in Whitten’s medium [110], we successfully developed the embryos to the hatched blastocyst stage [84]. We recently cultured cynomolgus monkey embryos in CMRL-1066 in petri dishes seeded with buffalo rat liver cells. The culture conditions for CMRL-1066 have been determined for rhesus monkey embryos [10, 63, 87, 109, 123], and we also obtained data for the development of such embryos to the blastocyst stage. For satisfactory use, further research must be conducted to determine such factors as the quality

Fig. 3. Cynomolgus monkey embryos obtained by IVF with frozen-thawed spermatozoa. (A) A mature oocyte surrounded by a corona and loose cumulus cells before insemination (arrowhead indicates a first polar body). (B) Pronuclear embryos (arrows indicate female and male pronuclei, and arrowheads indicate first and second polar bodies). (C) 4-cell embryos. (D) 6- to 8-cell embryos. (E) 8- to 16-cell embryos. (F) Compact morulae. (G) Expanded blastocysts. (H) Blastocyst hatching from zona pellucida. (I) Hatched blastocyst with empty zona pellucida. Scale bar represents 50 µm.
of the media or embryos at the start of the culturing, that affect the development rate.

2. Embryo transfer (ET)

ET is an essential technique for obtaining offspring from in vitro embryos. Establishing an efficient ET technique is therefore an important task in this research field. In 1984, 6 years after the first successful ET in man [94], ET in nonhuman primates was successful in the rhesus monkey [7], the baboon [17] and the cynomolgus monkey [5]. My research group also used ET to the oviduct of cynomolgus monkeys and successfully generated offspring (unpublished data) (Fig. 4). When normal embryos are transferred, the stage in the menstrual cycle of the recipient female must be in synchronization with the corresponding stage in the embryo. Our research strategy was the first to choose sexually mature females with normal menstrual cycles, and then to select from these candidates those females whose cycles were in synchronization with the embryo stage. When cryopreserved embryos are used, this synchronization is relatively simple to control: the embryos are thawed so as to be in synchronization with the menstrual cycle of the recipient, and then they are transferred [4, 54, 75, 115, 119].

When either fresh or cryopreserved embryos are used, the ovulation day of the recipient female must be accurately assessed. In one of our studies, we determined the ovulation day by detecting large changes in the steroid hormone concentration between the pre- and postovulation periods. The method used to measure such concentrations must be very simple, because measurements are taken over several days during the expected pre- and postovulation periods. In recent years much progress has been made towards establishing methods, such as enzyme immunoassays, that are capable of measuring hormones rapidly and with high sensitivity. The ovulation day of cynomolgus monkeys was estimated by measuring the estradiol-17β concentration of steroid hormones, a steroid that is common to all animal species [68, 69]. In another study, we measured the concentration of progesterone to confirm the presence of functional corpus luteum [69]. We also confirmed that the peptide hormones, such as FSH and lutenizing hormone, in cynomolgus monkeys can be measured by using assay kits developed for such measurements in human subjects [69]. The ovulation day in an individual monkey can therefore be easily and accurately estimated. In our current research we are generating offspring at a high success rate by using recipients whose ovulation day is revealed by using this simple method.

Methods to synchronize menstrual cycles [13, 21, 76] or to confirm ovulation [39, 97, 104] have been reported and will be useful for ET.

Conclusion

This article summarizes the past and present research by my research group in reproductive technology. Described here are our results on in vitro manipulation of spermatozoa and eggs, on establishing embryo manipulation techniques, and on clarifying the mechanisms of fertilization and preimplantation embryo development in nonhuman primates. Basal data from nonhuman primates are being steadily accumulated. In the near future many reproductive physiological phenomena, such as reproductive cell development, fertilization, embryo development, and implantation, will be clarified in detail, and such studies will help in the further development of standard techniques that are practical and comprehensive.
Acknowledgments

The studies summarized here were supported in part by a grant from the Ministry of Health and Welfare of Japan, by special coordination funds for promoting Science and Technology, and by a grant from the Japan Health Sciences Foundation. I express my sincere thanks to Dr. H. Tsuchiya and Ms. N. Ogonuki, members of my research group, for their technical support. I also thank the staff of the Tsukuba Primate Center, National Institute of Infectious Diseases, and the staff of the Corporation for Production and Research of Laboratory Primates. Finally, I thank Dr. Y. Yoshikawa of the University of Tokyo for his helpful support.

References

53. Lanzendorf, S.E., Holmgren, W.J., Schaffer, N., Hatasaka, H., Wentz, A.C., and Jeyendran, R.S. 1992. *In vitro* fertilization and gamete micromanipulation in the lowland...

