The Region-Specific Functions of Two Ubiquitin C-Terminal Hydrolase Isozymes along the Epididymis

Jungkee KWON\textsuperscript{1, 3), Satoshi SEKIGUCHI\textsuperscript{2), Yu-Lai WANG\textsuperscript{1), Rieko SETSUIE\textsuperscript{1), Yasuhiro YOSHIKAWA\textsuperscript{2), and Keiji WADA\textsuperscript{1)\
\textsuperscript{1)Department of Degenerative Neurological Diseases, National Institute of Neuroscience, National Center of Neurology and Psychiatry, 4–1–1 Ogawahigashi, Kodaira, Tokyo 187-8502,
\textsuperscript{2)Department of Biomedical Science, Graduate School of Agricultural and Life Sciences, The University of Tokyo, 1–1–1 Yayoi, Bunkyo-ku, Tokyo 113-8657, Japan, and
\textsuperscript{3)Laboratory of Animal Medicine, College of Veterinary Medicine, Chonbuk National University, 664–14 Duckjin-Ku, Jeonju 561-756, Korea

Abstract: We previously showed that gad mice, which are deficient for ubiquitin C-terminal hydrolase L1 (UCH-L1), have a significantly increased number of defective spermatozoa, suggesting that UCH-L1 functions in sperm quality control during epididymal maturation. The epididymis is the site of spermatozoa maturation, transport and storage. Region-specific functions along the epididymis are essential for establishing the environment required for sperm maturation. We analyzed the region-specific expression of UCH-L1 and UCH-L3 along the epididymis, and also assessed the levels of ubiquitin, which has specificity for UCH-L1. In wild-type mice, western blot analysis demonstrated a high level of UCH-L1 expression in the caput epididymis, consistent with ubiquitin expression, whereas UCH-L3 expression was high in the cauda epididymis. We also investigated the function of UCH-L1 and UCH-L3 in epididymal apoptosis induced by efferent duct ligation. The caput epididymides of gad mice were resistant to apoptotic stress induced by efferent duct ligation, whereas Uchl3 knockout mice showed a marked increase in apoptotic cells following ligation. In conclusion, the response of gad and Uchl3 knockout mice to androgen withdrawal suggests a reciprocal function of the two UCH enzymes in the caput epididymis.

Key words: apoptosis, epididymis, ubiquitin, UCH

Introduction

The mammalian epididymis is a highly convoluted tubule that connects the efferent ducts of the testis to the vas deferens \cite{2, 8}. The epididymis is composed of three distinct compartments, caput (head), corpus (body) and cauda (tail), each having a specific role in sperm maturation, sustenance, transport, and storage \cite{2, 6}. However, the molecular basis for the maturation process remains largely unknown.

It has been suggested that the epididymis acts as a quality control organ to eliminate defective spermato-
zoa before ejaculation [37]. The epididymis is an organ with voluminous protein traffic between the epithelium and lumen. Numerous proteins, secreted in an apocrine manner by the epididymal epithelium, are implicated in spermatozoa maturation [18]. Two major components of the ubiquitin-dependent proteolytic pathway, ubiquitin and UCH-L1 (PGP9.5), are expressed in epididymal tissue [10, 35]. Ubiquitin is present in human seminal plasma [26], and defective spermatozoa become ubiquitinated during epididymal passage [23, 37]. Our previous work showed that UCH-L1 associates with monoubiquitin and stabilizes its expression [31]. In addition, it has been suggested that UCH-L1 functions as a regulator of apoptosis via the ubiquitin pathway [13, 23, 25]. We found that testes of gracile axonal dystrophy (gad) mice, which lack UCH-L1, have reduced ubiquitin levels and are resistant to cryptorchid injury–mediated germ cell apoptosis [25]. Furthermore, our recent work demonstrated that the percentage of morphologically abnormal spermatozoa is significantly higher in gad mice, compared with wild-type mice [23].

Two mouse UCH isozymes, UCH-L1 and UCH-L3, are strongly but reciprocally expressed in the testis during spermatogenesis [25], suggesting that these proteins have distinct functions in the testis [23], even though they have high amino acid sequence identity and share significant structural similarity [21]. The functional regionalization of the epididymis is delineated at the molecular level by regional differences in gene expression [16–19]. Regional differences along the epididymis might be essential characteristics of the environment required for sperm quality control. Although it has been shown that UCH-L1 and UCH-L3 have reciprocal functions with respect to cryptorchid injury, their molecular functions in regulating sperm quality during epididymal passage are not fully understood. Thus, we examined the epididymal expression of UCH-L1 and UCH-L3 with regard to their involvement in the regulation of apoptosis. In addition, we assessed the reciprocal functions of these two proteins in the epididymis.

Materials and Methods

Animals

We used gad (CBA/RFM) [34] and Uchl3 knockout (C57BL/6J) [21] male mice at 10 weeks of age. The gad mouse is an autosomal recessive mutant that was obtained by crossing CBA and RFM mice. The gad line has been maintained by intercrossing for more than 20 generations [34]. Uchl3 knockout mice were generated by the standard method [21] using homologously recombinant ES cells, and the knockout line has been back-crossed several times to C57BL/6J mice. Both strains are maintained at our institute. Animal care and handling were in accordance with our institutional regulations for animal care and were approved by the Animal Investigation Committee of the National Institute of Neuroscience, National Center of Neurology and Psychiatry.

Unilateral efferent duct ligation

Animals were either left intact to serve as controls or were unilaterally ligated at the efferent duct [9, 38]. Four mice in each group were anesthetized with pentobarbital (Abbott Laboratories, North Chicago, IL), and the testis and epididymis on the right side were exposed through a scrotal incision. The thin avascular attachment joining the initial segment of the epididymis to the tunica albuginea was cut to permit exposure of the efferent ducts coursing above and parallel to the vascular supply. A silk suture was passed by needle through the thin sheet of connective tissue between the ductules and the blood vessels, and the efferent ducts were occluded by ligation. Mice were sacrificed 2 or 4 days after ligation. Both epididymides were immersed in 4% paraformaldehyde for at least 24 hr before they were dehydrated and embedded in paraffin [22].

Histological and immunohistochemical assessment of the epididymis

The caput, corpus and cauda epididymides along the epididymal region embedded in paraffin were cut into 4-µm sections and stained with hematoxylin and eosin. Light microscopy was used for routine observations. For immunohistochemical staining, the sections were incubated with 10% goat serum for 1 h at room temperature followed by incubation overnight at 4°C with a rabbit polyclonal antibody raised against peptides within UCH-L1 or UCH-L3 (1:1,000 dilution; peptide antibodies [24]) and ubiquitin (1:500; DakoCytomation, Glostrup, Denmark) in PBS containing 1% BSA. Sections were then incubated for 1 h with biotin-conjugated anti-rabbit IgG diluted 1:200 in PBS, followed by
Vectorstain ABC-PO (Vector Laboratories, Burlingame, CA) for 30 min at room temperature. Sections were developed using 3,3’-diaminobenzidine and counter-stained with hematoxylin.

In situ apoptosis was detected by TUNEL (TdT-mediated nick end-labeling) staining with the DeadEnd Fluorometric TUNEL system (Promega, Madison, WI) according to the manufacturer’s instructions, to identify apoptotic cells in situ via specific labeling of nuclear DNA fragmentation. Quantification was performed using four mice on each of postoperative days 0, 2 and 4. The total number of apoptotic cells was determined by counting the positively stained nuclei in each caput epididymis section [9]. Four sections from each mouse and 100 total circular tubules per group were processed.

Western blotting

Western blots were performed as previously reported [24]. Total protein (10 µg/lane) from each epididymal region including spermatozoa was subjected to SDS-polyacrylamide gel electrophoresis using 15% gels (Perfect NT Gel, DRC, Japan). Proteins were electrophoretically transferred to polyvinylidene difluoride membranes (Bio-Rad, Hercules, CA) and blocked with 5% non-fat milk in TBS-T (50 mM Tris base, pH 7.5, 150 mM NaCl, 0.1% (w/v) Tween-20). The membranes were incubated individually with primary antibodies to monoubiquitin (1:1,000; u5379, Sigma-Aldrich, St. Louis, MO), UCH-L1 and UCH-L3 (1:1,000 dilution; anti-peptide antibodies [24]), p53, Bax, and Bcl-xL (1:1,000 dilution; all from Cell Signaling Technology, Beverly, MA), and Bcl-2 (1:500; Transduction Laboratories, Franklin Lakes, NJ). Blots were further incubated with peroxidase-conjugated goat anti-mouse IgG or goat anti-rabbit IgG (1:5,000 dilution; Pierce, Rockford, IL) for 1 h at room temperature. Immunoreactions were visualized using SuperSignal West Dura Extended Duration Substrate (Pierce) and analyzed using a ChemiImager (Alpha Innotech, San Leandro, CA). Each protein level was normalized to α-tubulin following analysis with a ChemiImager using AlphaEase software.

Statistical analysis

The mean and standard deviation were calculated for all data (presented as mean ± SD). Student’s t-test was used for statistical analysis.

Results

Levels of UCH-L1 and UCH-L3 in individual epididymal regions

The epididymis is a single, long, coiled tubule situated on the surface of the testis (Fig. 1A). The epididymal epithelium is composed of four major cell types, principal cells, basal cells, clear cells and narrow cells [7], and can be divided anatomically and functionally into three regions, the caput, corpus and cauda epididymis (Fig. 1B, C, D). We used western blotting to characterize UCH-L1 and UCH-L3 levels along the epididymis (Fig. 2). In wild-type mice, the level of UCH-L1 was highest in the caput epididymis and that of UCH-L3 was highest in the cauda epididymis. UCH-L1 and UCH-L3 were not observed in gad and Uchl3 knockout mice, respectively (Fig. 2; comparison of UCH-L1 and UCH-L3 levels with those in wild-type control mice).

Immunohistochemistry of UCH-L1, UCH-L3 and ubiquitin in the epididymis

Under light microscopy, granular and diffuse UCH-L1 and UCH-L3 immunoreactivity was detected in many epithelial cells of the caput, corpus and cauda epididymis in wild-type mice (Fig. 3A, C). Granular immunoreactivity to ubiquitin was seen in the epithelial cells of the epididymis (Fig. 3B). The distribution of ubiquitin in the corpus and cauda epididymal epithelial cells was similar to that of the caput epididymis,
Fig. 2. Comparison of UCH-L1 and UCH-L3 expression by western blotting of caput, corpus and cauda epididymis lysates from two wild-type (CBA/RFM and C57BL/6J), gad and Uchl3 knockout mice. Blots were reprobed for α-tubulin, which was used to normalize the protein load. Images are representative of four independent experiments.

![Western Blot Image](image1.png)

Fig. 3. Immunohistochemistry of UCH-L1, UCH-L3, and ubiquitin in the individual epididymal regions of wild-type mice. Each of the protein-positive cells in the caput, corpus and cauda epididymis is stained by DAB. The insets show that no cells are positive for UCH-L1 and UCH-L3 in the individual epididymal compartments from gad (A) and Uchl3 knockout (C) mice, respectively. A: UCH-L1-positive cells. B: Ubiquitin-positive cells. C: UCH-L3-positive cells. Magnification, 400×. Scale bar, 20 μm.

![Immunohistochemistry Image](image2.png)
the ubiquitin staining in these epididymal regions was less intense (Fig. 3B). Immunoreactivity to both UCH-L1 and ubiquitin was intense in the caput epididymal epithelial cells, which was consistent with the expression level (Fig. 2 and Fig. 4A). Diffuse cytoplasmic immunoreactivity in the epididymal epithelial cells to UCH-L3 was intense in the cauda epididymis (Fig. 3C). As shown previously [24], no UCH-L1 or UCH-L3 immunoreactivity was found in the epididymal epithelial cells of gad and Uchl3 knockout mice, respectively (Fig. 3A, C, inset).

Region-specific localization of ubiquitin and apoptotic proteins in the caput epididymis

We previously reported that UCH-L1 binds ubiquitin, and that the level of ubiquitin is decreased in gad mice [25, 31]. To determine whether UCH-L1 is associated with the ubiquitin level in the epididymis, we performed western blot analysis of the individual epididymal regions. The monoubiquitin level was markedly higher in the caput epididymis than in the corpus and cauda epididymis, and the low level of monoubiquitin in gad mice is consistent with our previous report [25] (Fig. 4A). The epididymis of Uchl3 knockout mice did not show a difference in ubiquitin level compared with the corresponding wild-type controls.

To explore whether apoptotic phenomenon of spermatozoa in the caput epididymis is in accord with the high expression of apoptotic proteins, we used western blot analysis to verify the expression levels of p53 and Bcl-2 family proteins, which are associated with cell death [12, 28, 29]. The levels of p53 and Bax protein, considered to be proapoptotic, were strikingly high in the caput epididymis, consistent with the pattern of the monoubiquitin level (Fig. 4B). In the gad mouse, the levels of the antiapoptotic proteins, Bcl-2 and Bcl-xL, were markedly elevated compared in wild-type mice in the caput epididymis [23] as well as a possible increase in the corpus and cauda epididymis, whereas the levels of apoptotic proteins, p53 and Bax, were unchanged (Fig. 4B). However, we did not detect a difference in the analyzed protein levels between the epididymis of Uchl3 knockout and wild-type mice.

Region-specific apoptosis in the epididymis following unilateral efferent duct ligation

Androgen deprivation by efferent duct ligation induces glandular epithelial cell death via an apoptotic mechanism [9, 38]. We previously showed that germ cell apoptosis differs between gad and Uchl3 knockout mice following cryptorchid injury [25]. To detect apoptosis in the epididymis following efferent duct li-
After leaving the testis via the testicular rete, spermatozoa collect in the epididymis, where they undergo final maturation and storage [2, 36, 37]. During epididymal passage, ubiquitination may trigger apoptotic mechanisms that recognize and eliminate abnormal sper-
matozoa, and ubiquitination is believed to play an important role in controlling sperm quality to ensure the production of intact, functional spermatozoa [10, 27, 37]. Ubiquitination of abnormal spermatozoa predominantly occurs in the caput epididymis [37].

Previous studies have shown that two closely-related UCH isoforms, UCH-L1 and UCH-L3 have distinct expression patterns during spermatogenesis [24] and reciprocal functions following cryptorchid injury [25]. We have proposed that UCH-L1 might function as a regulator of apoptosis. Indeed, UCH-L1-deficient gad mice are resistant to apoptotic stress [13, 23, 25], and this apoptotic resistance leads to alterations in sperm motility and morphology as well as an increased number of defective spermatozoa in the epididymis of gad mice [23]. Our present study demonstrated that UCH-L1 and UCH-L3 have distinct expression patterns along the epididymis in wild-type mice (Fig. 2). We detected a high level of UCH-L1 in the caput epididymis, the main maturation organ, whereas the UCH-L3 level was high in the cauda epididymis, the main storage organ [10]. These region-specific variations in UCH-L1 and UCH-L3 level suggest that they have different functions in the epididymis. The regional differentiation of the epididymis, as suggested by region-specific gene expression, reflects different luminal environments between the regions [16, 19].

We also determined the expression pattern/level of the major component of the proteolytic pathway, ubiquitin, which has specificity for UCH-L1. UCH-L1 associates with monoubiquitin [31], and the monoubiquitin level is reduced in gad mice relative to wild-type mice [25, 31]. Predictably, monoubiquitin expression pattern showed similar patterns to UCH-L1 and UCH-L3 in the epididymis of gad mice, which had its highest level in the caput epididymis relative to the corpus or cauda epididymis in wild-type mice (Figs. 3 and 4A). Ubiquitin induction is important for regulating programmed cell death, which is a fundamental component of spermatogenesis [1, 23, 32]. Under specific circumstances, the caput epididymis contains a high level of ubiquitin, which may serve to maintain apoptotic mechanisms that eliminate abnormal spermatozoa [37]. This is consistent with the high levels of apoptotic p53 and Bax observed in the caput epididymis compared with the corpus and cauda epididymis (Fig. 4B). Protein p53 and Bax are classically thought to be involved in regulating apoptotic processes, and are targets for ubiquitination [5, 7, 29, 30]. The role of p53 in mediating apoptosis in the male genital tract has been demonstrated in several mice lines [28, 29, 42]. However, p53-independent apoptosis is suggested in the prostate and seminal vesicles by androgen withdrawal or in the rat epididymis by deprivation of luminal factors [3, 11, 14, 38]. Previous studies indicated that Bcl-2 family proteins are involved in the induction or prevention of apoptosis [12, 33, 39, 40]. In gad mice, in the present study, the levels of the antiapoptotic proteins, Bcl-2 and Bcl-xL, were markedly increased in the caput epididymis (Fig. 4B), although there was no difference in the levels of the apoptotic proteins, p53 and Bax, relative to wild-type mice. The high levels of Bcl-2 and Bcl-xL in the caput epididymis of gad mice is consistent with a previous report that the percentage of morphologically abnormal spermatozoa is significantly higher in gad mice [23]. Therefore, the variations of in the levels of Bax, and Bcl-2 and Bcl-xL combined in the caput epididymis probably maintain the regulation of apoptosis [4].

Our previous work focused on the reciprocal functions of UCH-L1 and UCH-L3 exhibit, a distinct feature in testicular germ cells following cryptorchid-induced apoptosis [25]. To characterize the distinct functions of UCH-L1 and UCH-L3 in the epididymis, gad and Uchl3 knockout mice were examined after efferent duct ligation. The epididymal epithelium of the two mutant mice showed differences in apoptotic induction following efferent duct ligation (Fig. 5), after which the circulating androgen level decreases rapidly as a result of apoptotic cell death [9, 20, 38]. After duct ligation, the number of apoptotic cells increased in the caput epididymis of Uchl3 knockout mice compared with wild-type mice, whereas gad mice showed relative resistance in this regard (Fig. 5B). In gad mice, the resistance to apoptotic stress can be explained by the high levels of Bcl-2 and Bcl-xL combined in the caput epididymis (Fig. 4B). The tissue androgen level is higher in the caput epididymis than in the corpus or cauda epididymis [15, 38]; thus, apoptotic cells showed in the caput epididymis rather than in the corpus and cauda epididymis following efferent duct ligation. These results may suggest that UCH-L1 and UCH-L3 have reciprocal functions in the caput epididymis fol-
lowing apoptotic stress induced by androgen withdrawal, as was shown with cryptorchid stress [25].

We cannot explain the profound apoptotic phenomenon observed in the present study in the caput epididymis of Uchl3 knockout mice after efferent duct ligation by the balance of the Bcl-2 family proteins alone. Although our previous report showed that the Nedd8 expression level increased in the testis of Uchl3 knockout mice [25], we found no difference in the present study (data not shown). The mechanism with regard to the antiapoptotic function of UCH-L3 requires further study. Our present study demonstrated that UCH-L1 and UCH-L3 have distinct expression levels along the epididymis as well as reciprocal functions in response to apoptotic stress induced by androgen withdrawal.

Acknowledgments

We thank H. Kikuchi for technical assistance with tissue sections, and M. Shikama for the care and breeding of animals.

Grant support: This work was supported by Grants-in-Aid for Scientific Research from the Ministry of Health, Labour and Welfare of Japan, Grants-in-Aid for Scientific Research from the Ministry of Education, Culture, Sports, Science and Technology of Japan, a grant from the Pharmaceuticals and Medical Devices Agency of Japan, and a grant from Japan Science and Technology Agency. This paper was supported (in part) by research funds of Chonbuk National University in 2005.

References

THE FUNCTION OF TWO UCH ISOZYMES ALONG THE EPIDIDYMIS

