Experimental Animals
Online ISSN : 1881-7122
Print ISSN : 1341-1357
ISSN-L : 0007-5124
Calcium carbonate supplementation causes motor dysfunction
Ami SugiuraMisa KitamuraYasushi Hasegawa
Author information

2022 Volume 71 Issue 3 Pages 399-410


We previously showed that a diet containing calcium carbonate causes impairments in spatial and recognition memory in mice. In this study, we investigated the effects of calcium carbonate supplementation on motor function. Motor function was determined using different tests that have been used to analyze different aspects of Parkinsonism. A catalepsy test for akinesia; a muscular strength assessment, pole test, beam-walking test, and gait analysis for motor coordination and balance assessment; and an open-field test for locomotor activity assessment were performed. The mice were fed diets containing 0.6% or 1.0% calcium carbonate for eight weeks, after which they were evaluated for motor functions. The diets containing calcium carbonate caused significant motor dysfunction, as revealed by the different tests, although the spontaneous locomotor activity did not change. Calcium carbonate supplementation decreased the dopamine content in the basal ganglia, including the striatum and substantia nigra, and the number of tyrosine hydroxylase-positive neurons in the substantia nigra. In addition, administration of L-dopa led to at least a partial recovery of motor dysfunction, suggesting that calcium carbonate supplementation causes motor dysfunction by decreasing the dopamine content in the basal ganglia. These results suggest that mice with calcium carbonate-induced motor dysfunction may be useful as a new animal model for Parkinson’s disease and Huntington’s disease.

Content from these authors
© ©2022Japanese Association for Laboratory Animal Science
Previous article Next article