開発は、がん化学療法の研究において非常に魅力的なテーマである。また、遺伝子治療の研究が進展していることと連動して、がん細胞を特異的に殺せるようなウイルスというものが開発できれば、がん治療法において新しい戦略を展開できると言期待される。


では、AAV どのようにして G2 期阻止やアポトーシスを誘導しているのだろうか？意図したように、AAV によるアポトーシス誘導では AA がウイルスの複製や、AAV ウイルス DNA にコードされるタンパク質は必要なこととが判明した。これらの知見から、AAV の 1 本鎖 DNA は、DNA 損傷後に起こるような p53 を介する G2/M 期のチェックポイント機構を活性化する作用を持つが、p53 に異常がある細胞では G2 期停止が正常ではなく、その結果、アポトーシスが誘導されたという可能性が考えられた。実際に、AAV の 1 本鎖 DNA のヘアポリープループ領域のオリゴヌクレオチドは、p53 欠損細胞に非特異的に細胞死を誘導していることが明らかになった。さらに Beard らのグループは、AAV を使用してマウスを用いた治療実験を行ったところ、期待通り、AAV は p53 の欠損した腫瘍細胞の組織の再生を抑制すると共に、腫瘍塊をも縮小させることができた。

以上の実験結果は、AAV が、p53 の変異を持つがん細胞に特異的な治療法を有効であることを期待させる。もちろん、現実的に治療に応用するには解決すべき問題は多いであろうが、今回の Beard らの報告は、AAV の他に似たような抗增殖作用を持つ parvoviruses や、類似のヘアポリープループ構造 DNA を用い、したがって、ウイルスやオリゴヌクレオチドののがん治療への応用開発などにも影響を与えるだろう。さらに、学術的には AAV が ATM-p53 を介するチェックポイント機構と G2 期阻止は活性化するが、p53 依存的なアポトーシスは誘導しないといいのは興味深い。

AAV 本鎖 DNA と DNA 損傷では、p53 に対するキナーゼ群の反応が異なるだろうか？AAV による p53 非依存性のアポトーシスの推測では mitotic catastrophe とはどのようなマシンであるだろうか？更なる研究の展開を期待したい。


（国立感染症研究所研究所）

D・生化学、衛生化学 高橋敬彦 KATSUHIKO TAKAHASHI

メタプロテアーゼ(MMP)の生体内活性検出法への期待

がん治癒が進んだ今日においても、“がんは恐ろしい病気である”という感を取れないがん細胞の遠隔部位への転移は、治療後の経過を悪化させる大きな要因であり、転移を抑制する薬剤の開発及び臨床での実用化が求められている。

がん細胞転移の過程は、①原発
抗んのんが素的trixtrixのられままでリ実ちロプトトリマ。いび移動潤かから巣じ制がんを細胞価ることとにトがんがんが活動を抑制するしないわけである。

最近、こうした問題を克服する新しいMMP活性検出法として、近赤外線標識ペプチドを用いたin vivo検出法が報告された。\(^3\) MMP-2は基底膜の主成分機能であるコラーゲンを分解するMMPの1つであり、がん細胞におけるMMP-2の産生能と転移能との間に相関があることが知られている。

Bremerらは、MMP-2のペプチド基質合成、これを近赤外線蛍光色素(near infrared fluorochrome: NIRF)で標識したプローブ(以下NIRFプローブ)を用いて生体内でのMMP-2活性測定を試みた。\(^3\) 本NIRFプローブは、NIRF同士でシグナルを消すため、未著明では蛍光を発しないが、in vitroでMMP-2によりアミノ酸配列特異的に分解されることで蛍光を発するプローブであることが確認された。そこで、in vivoで使用可能か否かを確認するために、通常の抗がん剤の効果試験と同様にヌードマウスにヒトがん組織を移植したモデルを作製した。すなわち、MMP-2を産生しているがん細胞HT1080をヌードマウスに移植し、移植がん組織の大きさが2〜3mmになったところで、ブリロマスタットを2日間、日に2回腹腔投与した。最終投与から30分経過後、NIRFプローブを静脈内注射し、更に2時間後、がん組織部位におけるNIRFシグナルを検出し画像処理を行った。この結果、in vivoでも、in vitroの結果と同様にMMP-2活性が検出され、またブリロマスタット投与によりがん組織部分のMMP-2活性の抑制については、NIRFシグナル強度が対照群に比べて下がっていしたことから示された。

薬効の評価が、物質投与開始から数週間を要していたものの、このNIRFプローブを用いる事により投与後数時間以内で可能となった。NIRFプローブの場合10mm以上の透過が期待できないが、光学技術の発達に伴い、更に透過性のよいプローブも使用可能となりよう。今後各種MMPやその他のプロテアーゼ阻害剤開発への応用が期待される手法である。また、薬物評価のみならず、各種プロテアーゼ活性の生体内での検出にも応用が期待される。

1) 前沢宏幸ほか、最新医学、47、2287(1992)。
3) Koivunen E. et al., Nature Biotechnol., 17, 768(1999)。

（昭和大学薬学部助手）

344 ファルマシア Vol.38, No.4 2002