細胞のリモートコントロール
ChemistryとGenetics

古田寿昭
Toshiaki FURUTA
東邦大学理学部生物分子科学科、複合物性研究センター教授

1 はじめに

「ケージド化合物って便利そうですけど、何ができるのでしょうか？」とよく聞かれる。「ケージド化合物」は、光で活性化される分子の総称です。つまり、光照射でスイッチがオン（あるいはオフ）になり、光をあてた瞬間にあてた場所の○○○を（不）活性化することができます。「シグナル分子、神経伝達物質、遺伝子の機能も光で制御可能です」と説明している。しかし、心の中では（確かな時間分解能と空間分解能をもつ光）光照射で遺伝子発現を制御できた絶対面白、でもこれって、お金と時間をかければ他の方法でも不可能ではないとも。それに、個体への応用を考えると局所に光をあてるのは現実的ではないし…）。つまり、alternative methodではあるけど、indispensable methodにはなり得ていない物足りさと、既存の技術を凌駕し、研究の方法論そのものも変えてしまうtechnologyである、と自信を持って言えなくてもかしさを感じていた。

最近、メキシコ自治大学のA.Darszonと西垣卓也らのグループが、および、Yale大学のG.Miesenboeckらのグループにより、ケージド化合物を用いた光制御の可能性を拡げる研究が相次いで報告された。本稿では彼らの研究を中心に、ケージド化合物を用いて細胞の機能や個体の行動を光でリモートコントロールした例を紹介する。

2 光制御するためのケージド化合物

まずは、ケージド化合物の化学について簡単に説明する。ケージド化合物(caged compounds)とは、活性発現に欠かすことのできない官能基を光分解性保護基で保護し、一時的に不活性化した化合物の総称である。

例として、1978年にJ.H.Kaplanらが報告したATPのγ-1-{2-ニトロフェニル}エチルエステル(NPE-ATP)の構造を示した(図1)。NPE-ATPに修飾可能な官能基が複数あるが、アデニン塩基のアミノ基やリポース環のヒドロキシル基を保護して
も，ADPへの加水分解は進行する。これに対し，γ-リン酸をエステル化すると，加水分解反応は進行しない。よって，NPE-ATPはエネルギー源としてのATPの性質を失っている。NPE基は300〜350 nmのUV光照射で脱保護されるので，光をあてた場所に瞬時にATPが出現する。

ケージド化合物の合成は，基本的には保護基の化学である。大抵の生理活性分子には官能基が複数ある。そこで，合成を簡略化するためには，官能基選択的に保護できるような前駆体を開発することが重要になる。1例を挙げよう。我々のグループでは，これまで用いられてきた2-ニトロベンジル基よりも望ましい性質を持つ光分解性保護基として，(6-bromo-7-hydroxycoumarin-4-yl)methyl基（Bhc基）を開発した。Bhc基の導入前駆体としては，4-diazoethyl-6-bromo-7-hydroxycoumarin（Bhc-diazo）を設計した。Bhc-diazoは，リン酸やスルホン酸と反応して保護体を生成する。例えば，無保護のcGMPと重合すると脱窒素を伴って選択的にリン酸と反応し，光分解性のBhcエステルを生成する。生成したBhc-cGMPは，350〜400 nmのUV光照射によって定量的にcGMPを放出する。このときの副生成物は，6-bromo-7-hydroxy-4-hydroxymethylcoumarinである（図2）。また，Bhc-diazoの7位のフェノール性ヒドロキシル基をアセチル基で保護しておくと，細胞膜透過性のケージドcGMPであるBhc-cGMP/Acを合成できる。同様にして，DNAやRNAのようなオリゴヌクレオチドのケージド化合物の合成にBhc-diazoを用いることもできる。

図2

図3
自由に運動している単一細胞のコントロール——鞭毛運動の光制御

精子は卵から発される化学誘引物質の濃度勾配を検知して進む。これを走化性(chemotaxis)という。Darszon グループの西垣及び Wood らは、精子の走化性における鞭毛の運動と細胞内のシグナル伝達の関係を詳細に解析している。彼らが材料にしているウサギの精子は、誘導性ペプチドの濃度が高くなる方向に（すなわち卵に向かって）直進し、濃度が低いところで止まる。西垣は鞭毛非対称に曲がって運動することによる。このとき、細胞内では複数のメッセンジャー分子が協調して働き、鞭毛の運動を制御していると考えられる。これを調べるには、例えば精子が自由に運動できない環境下でその運動を観察しながら、特定のシグナル伝達系を活性化する刺激を与え、鞭毛運動に及ぼす影響を観測する実験が必要となる。しかし既存の実験では、例えば刺激の元になる分子をピペットで加えることは可能だが、水圧の変化に鞭毛運動が影響されてしまう。また、メッセンジャー分子の細胞内濃度を瞬時に上げることは、インタクトな細胞では事実上不可能である（さらに、細胞内シグナル伝達系では、局所の活性化が重要であることが認識されているが、これは再現して確かめる実験系も容易には組まない）。

西垣らは、膜透過性のケプト(cGMP(Bhc-cGMP/Ac)を導入後、光照射で瞬時に細胞内の cGMP 濃度を上昇させる方法で、これらの問題を一気に解決することに成功した。ケプト化合物の導入時には細胞に負担がかかり、その運動性も影響するため時間をおくことで細胞は定常状態に戻る。その後、精子が自由に運動する様子を観察しながら、それぞれ同時に細胞内のカルシウムイオン濃度を蛍光プローブ(Fluo-4)でモニターし、フラッシュ光照射して瞬時に細胞内の cGMP 濃度を上昇させ、その結果、cGMP 濃度の上昇に少し遅れて、細胞内カルシウムイオン濃度が上昇することが確かめられた。すなわち、鞭毛運動に関わる細胞内シグナル伝達カスケードで、cGMP がカルシウムイオンの上昇に位置すること、さらに細胞内のカルシウムイオン濃度変化のタイミングと場所を巧妙にコントロールすることにより、鞭毛運動が制御されていることも明らかになった。激しく運動する細胞の運動性に影響を与えることなく、細胞内分子の濃度を一瞬にして上昇させる方法は、現時点ではこの方法以外に考えられない。さらに、ケプト化合物の光リモートコントロールの特徴を十分に活用した研究といえる。なお、J. Cell Biol.誌の Web サイトでカルシウムイメージングのムービーの幾つかを見ることができる（http://www.jcb.org/cgi/content/full/jcb. 200411001/DC1）。

ここで示された実験手法は、単にウサギ精子の鞭毛運動のメカニズムを解析する手段を提供するにとどまらず（もちろん、これも精子の運動不良による不妊症治療の基礎研究として重要）、培養細胞、組織、浮遊細胞、さらには運動するモデル生物等にも適用可能である。ケプト化合物を用いる光リモートコントロールと蛍光プローブを用いるリアルタイムイメージング等を組み合わせて、他では実現できない新しい研究手法を提供する道を開いた成果といえるだろう。

個体行動のリモートコントロール：リモコンのハエ

細胞や組織サンプルを用いる解析で得られる情報には限りがある。最終的には、「じゃあ、個体ではどうなの？」ということになる。しかし、精子細胞をコントロールした方法を多細胞生物にそのまま適用することはできない。アブラ恵したケプト化合物は全身に広がると考えられるので、全身に光照射すれば活性化も全身で起こってしまうからである。これでは、たとえ明瞭な行動の変化が観察されたとしても、それがどの組織（あるいは細胞）の、どのバースウェイに由来するのか明らかになることはできない。細胞を選択してスポット光を照射するのも現実的ではない。これが chemistry のみを用いた場合の
限界であろうか。では、どうするか？Geneticsと組み合わせるのが現時点では最良の解決策である。つまり、活性化する細胞に遺伝的因子を目印をつければいいので、Miesenboeckらの研究を紹介しよう。

Genetically encodedシステムの特徴の1つは、ターゲッティングにある。任意のタンパク質を任意の細胞、あるいは組織に発現させることができる。具体的には、特異的に働くリガンドとその受容体タンパク質の組を用意する。遺伝子操作系が確立している生物を用いて、特定の細胞にレセプタータンパク質を発現させておく。これに、ケージド化合物に変換したリガンドを投与する。そうすれば、たとえ光照射によって活性化分子であるリガンドが全身に広がっていても、そのターゲットを持つ細胞のみを活性化することができる。彼らはこれをphotochemical key-and-lock mechanismと名付けている。つまりgeneticsで細胞に目印を付けて（細胞を選んで）、chemistryでその働きを制御するわけである。

このコンセプトを実現する場として、彼らはシュウジョウバエを選んだ。シュウジョウバエは、遺伝子操作による変異体的に容易であるという利点がある。また、ハエのような無脊椎動物には少数のニューロンのセットで支配される常態運動（stereotyped motor behavior）がある。指令ニューロン（command neuron）と名付けられた特定のニューロンが興奮すると、その後の行動は自動的に行われる（と考えられているので、光照射で特定のニューロンを興奮させて、人工的行動を制御するシステムを作るのに好都合である。昆虫では Giant fiber (GF) systemがこれにあたり、羽ばたきや飛翔開始のような逃避行動を支配している。

そこでMiesenboeckらは、部位特異的遺伝子発現調節法の1つであるGAL4エンハンサートラップ法を用いて、ラットのP2Xレセプターを特定のニューロンに発現した変異体のハエを作成した。酵母の転写調節因子GAL4は、その標的配列UAS（upstream activating sequence）の下流遺伝子の発現を誘導する。発現パターン既知のエンハンサーによって組織特異的にGAL4を発現する系統（GAL4エンハンサートラップシステム）と、UASの下流にP2X2遺伝子をつながった系をかけ合わせると、GAL4発現細胞だけにP2X2を発現する個体が得られる。この方法で、ハエのCNS（central nervous system）中に約100,000個あるニューロンのうち、2個のGFだけにP2X2を発現する個体を得た。1つは、TTMnsという運動ニューロンに直接入力するもので、もう1つは、介在ニューロンPSiを介して運動ニューロンDLMnsを支配するGFである。模式図を図4に示した。作成した変異体のハエの神
経路網路の形成、行動及び成長は野生型のものと全く変わらなかった。

P2X3レセプターは、プリンスソレオチドをリガンドにするイオンチャネルタンパク質で、ATP（100〜200μM）で開口して活動電位を発生する。ソウジョウガクのGF systemにはプリンスソレオチドとリガンドにするチャネルは存在しないので、ケージドATPの光照射で発生したATPはP2X3を発現したニューロンのみを興奮させるはずである。次に、このハエのCNSにケージドATPの1つであるDMNPE-ATPを微量注入し、石英ガラスの透明な円筒型チャバー内に閉じ込んでおく。UVレーザーを用いて、355 nm光（8 mW cm⁻²）を150〜250 ms間だけ照射するとハエは激しく羽ばたき、肢を伸ばしてジャンプし典型的な逃行行動が観察された。数か所のコントロール実験によれば、光照射によって興奮したGFからの入力がTTMnsとDLMnsに支配されている筋肉を動かしていることが確認された。すなわち、光照射で特定の運動システムを動かすことのできるリモコンのハエを作ることができる。Cell誌のWebサイトには光照射でジャンプし、羽ばたきやすハエのムービーも公開されている。（doi:10.1016/j.cell.2005.02.004）

ここで示した手法は、細胞同士がネットワークを作って、システムとして働いている骨を調べるのに有効である。例えば、特定のニューロンの働きを光で制御することで、その細胞が構成するネットワークを明らかにする、神経系のたたらきを解明する基礎研究のためにも、また医療への応用面でも重要な技術になるであろう。

生命をシステムとして理解することの重要性が叫

参考文献
3) Lima S. Q. et al., Cell, 121, 141-152 (2005).