DNA コンジュゲート材料による
バイオ計測法の開発

金山直樹
Naoki KANAYAMA
筑波大学大学院数理物質科学研究科講師

前田瑞夫
Mizuo MAEDA
（独）理化学研究所主任研究員

新しい物質や材料が生まれると、これをもとに分析化学が新たな地平を拓き、さらに異分野へ大きな波及効果をもたらすことがある。その例は、クラウノエーテルとイオン選択性電極、多孔性樹脂とサイズ排除クロマトグラフィー、らせん高分子とミクロ分離カラム、量子ドットとバイオイメージングなど多種多様にとまらないが、これらは薬学研究を含む生命科学の発展を基礎から支えている。

本稿の主題である DNA は、いうまでもなく生物の遺伝情報の担い手であるが、筆者らはこれを機能物質の原料とされ、DNA を 1 成分とする新素材の開発とバイオ計測への応用に関する研究を進めてきた。

従来、バイオ計測における化学合成 DNA の利用はエンリューションプローブや PCR プライマーとしての役割が主であった。しかし、化学合成 DNA が比較的安価で供給されはじめると、また可能な化学修飾のバリエーションが増えるにしたがい、その適用範囲は次第に大きな広がりを見せてきている。試験管内分子進化法により、酵素活性を有する DNA サイズや分子認識能を発揮する DNA アンプターやその機能性 DNA が開発され、バイオ計測に利用されはじめている。また「DNA 折り紙」と呼ばれる手法により、特殊な 3 次元構造体も自在に設計できるようになってきており、ナノテクノジーの大きな成果の一つとして注目を集めている。

一方、化学合成 DNA 中に導入した官能基を足がかりとして、あるいはホスホロアミニダイト法を拡張することによって、DNA を金属や無機材料あるいはポリマーなどの異種材料と複合化し、両者の機能を融合した新しい機能性材料すなわち DNA コンジュゲート材料が開発されている。金ナノ粒子にチオール化 DNA を修飾した DNA-金ナノ粒子コンジュゲートは、その典型的な例である。局所プラズモン共鳴に起因する金ナノ粒子の優れた発色特性と DNA の高い分子認識能の融合により、遺伝子解析はもとよりサイトカインや有害金属イオンの微量検出、薬剤スクリーニングなどへの応用が盛んに研究されている。

これに対し、合成高分子（ポリマー）と DNA からなるコンジュゲート材料は、有機化学反応や精密高分子合成に基づいた目的的な分子設計が可能であり、さらに合成高分子特有の分子形態（たとえば）や自己集積性を積極的に活用することで多様なバイオ計測への展開が期待できる。本稿では DNA コンジュゲート材料、特に DNA ナノ粒子を用いるバイオ計測に関し、筆者らの研究概要を概説する。

1. DNA を表面に持つナノ粒子の奇妙な現象

筆者らは、poly(N-isopropylacrylamide) (PNIPAam) の側鎖に DNA がグラフトされた DNA グラフトポリマー (PNIPAam-g-DNA) を合成した。PNIPAam は下限臨界溶液温度 (LCST; lower critical solution temperature) を有する代表的な温度応答性ポリマーである。すなわち、室温では水に溶けるが、LCST (約 32℃) 以上の温度では脱水和して凝集体を形成し、白濁・沈殿する。ところが、9 塩基からなるオリゴ DNA を 0.35 mol％程度グラフトした PNIPAam の水溶液は、意外なことに LCST 以上の温度においても白濁せず、透明なままであることが見いだされた。

この過程を示差走査熱量計 (DSC) で調べると、吸熱ピークが 36℃付近に観察された。これは、
PNIPAAmの脱水和に伴うものであると考えられる。つまりPNIPAAm鎖は水に不溶となっているはずなのだが、系は透明なままなのである。そこで動的光散乱法（DLS）を用いて調べてみると、37℃以上では溶液中に直径50nmの構造体が生成していることが分かった。脱水和したPNIPAAmの凝集体からなるコアを約200本のDNA鎖がおおうポリマーミセル、ないしはナノ粒子が形成されたのである。そのサイズが可視光の波長に比べて十分小さく、濁りを肉眼で観察することができないというわけである。DNA鎖は親水性のポリアミオンであって、これが自己組織的に水相側に向けて粒子表面に集積しており、そのためナノ粒子は静電反発によって水中に分散しているのである（図1）。

実際、この透明なコロイド分散液は非常に安定であって、1m NaClを超える高塩濃度条件においてもDNAナノ粒子は塩析を起こすことなく、透明なままである。一方、粒子上のDNA鎖は、溶液中におけるフリーリーのDNAの場合ほどは同等の相補鎖結合能を有することが確かめられた。そこで興味深いことに、DNAナノ粒子分散液に等モルの完全相補鎖を添加した後に塩を加えていくと、今度は400mM NaClの条件で分散液が白濁を示すことが見いだされた（図1）。つまり、ナノ粒子上のDNA鎖が二重らせんを組む、一本鎖状態の時より粒子の分散安定性が下がるということである。

これは、直感的には不思議な現象である。DNAを表面にを持つナノ粒子のコロイド分散安定性は、表面DNAのアニオン反発に因ると考えるのが自然である。すると相補鎖を加えて二重鎖が形成されればアニオン数が倍になるはずであり、安定性はさらに向上すると考えられるからである。

この現象の理解には高分子電解質理論が必要なのであるが、定性的に説明すれば次のようになる。すなわち、DNA二重鎖は相補的な核酸塩基間での塩素結合（塩基対形成）と塩基対同士のπスタックングのために、コンパクトでリジッドな構造をとる。塩基が増えるため、このため、対イオノンが近傍に濃縮される。これに比べフレキシブルな一本鎖では、フリーリーのリン酸アニオンの割合は二重鎖の2～3倍程度と大きく、結果として粒子上の正味の負電荷はほとんど変わらない、むしろ、一本鎖の柔軟性に基づく粒子間のエントロピー反発が、分散安定性の主たる原因となっているとは説明される。

この一本鎖DNAを表面に持つナノ粒子に相補鎖を加えると直ちに白濁するという現象は、学界から驚きをもって迎えられた。以来、筆者らはこのDNAナノ粒子の新奇な凝集現象をもとに、様々な新規バイオ計測法を提案してきた。いずれの場合においても、最終的なアウトプットは溶液の密度や色の変化という可視情報で与えられ、あらかじめ検出ターゲットのラベル化を必要としない簡便な計測が可能である。以下に、その具体的な事例を紹介する。

遺伝子の1塩基変異識別

DNAナノ粒子の相補鎖依存的な凝集現象を利用
表1 サンプル DNAとプローブDNAの重錠形成によるDNAポリマーセルの非架橋凝集と融解温度 (Tm)

<table>
<thead>
<tr>
<th>配列</th>
<th>Tm(℃)</th>
<th>変異のタイプ</th>
<th>凝集の有無</th>
</tr>
</thead>
<tbody>
<tr>
<td>プローブDNA</td>
<td>—</td>
<td>—</td>
<td>—</td>
</tr>
<tr>
<td>I</td>
<td>5’-GCC ACC AGC-3’</td>
<td>54.3</td>
<td>完全相補</td>
</tr>
<tr>
<td>II</td>
<td>3’-CGG TGG TCG-5’</td>
<td>29.1</td>
<td>置換</td>
</tr>
<tr>
<td>III</td>
<td>3’-CGG TAG TCG-5’</td>
<td>37.8</td>
<td>捨入</td>
</tr>
<tr>
<td>IV</td>
<td>3’-CGG TGG TGT-5’</td>
<td>33.0</td>
<td>欠失</td>
</tr>
<tr>
<td>V</td>
<td>3’-CGG TGG TCA-5’</td>
<td>49.6</td>
<td>末端変異</td>
</tr>
<tr>
<td>VI</td>
<td>3’-CGG TGG TCG A5’</td>
<td>58.1</td>
<td>1塩基突出</td>
</tr>
</tbody>
</table>

a) 10 mM Tris-HCl buffer (pH 7.4) containing 1 mM NaCl, [サンプルDNA]=[プローブDNA]=3μM. b) 40℃, 1 mM NaCl共存下。

そして、標的とするDNA配列中の1塩基変異の有無を、目視で明確に識別することができる。PNIPAAm-dNA水溶液をPNIpAamのLCST以上の温度（例えば40℃）で保持して得られるDNAナノ粒子分散液は、粒子上のDNA鎖（以下、プローブDNA）が一鎖状態であれば高濃度の塩の共存下でも安定に分散し、溶液は無色透明である。1 M NaClを共存させ透明なDNAナノ粒子分散液を40℃に保持したとき、表1に示すサンプルDNAを添加した。プローブDNAに完全に相補的なサンプルDNA（I）を添加した場合、DNAナノ粒子は速やかに（数分以内に）凝集し、溶液を白濁させた。一方、（I）の中央部分に置換、欠失あるいは挿入の1塩基変異を有するサンプルDNA（II 〜 IV）を添加した場合は、いずれの場合においてもDNAナノ粒子の凝集は誘起されず、溶液は透明なままであった。

このように、サンプルDNA中における1塩基変異の有無を目視で明確に識別することが可能となった。表1にプローブDNAと各サンプルDNAが形成するDNA二重鎖の融解温度（Tm）を示した。完全相補のサンプルDNA（I）の場合、プローブDNAとの間で形成するDNA二重鎖のTmは54.3℃で測定温度の40℃よりも高い。に対し、1塩基変異を含むサンプルDNA（II 〜 IV）ではTmは測定温度よりも低い価を示した。したがって、プローブDNAは1塩基変異を含むサンプルDNA（II 〜 IV）と、この測定条件下において二重鎖を形成せず一鎖状態であるため、DNAナノ粒子は安定に分散することができ、透明な状態を保持していたと解釈される。

4. 遺伝子の末端変異識別

ところがここで、上の解釈があたかもない極めて興味深い事実が見いだされた。表1に示すサンプルDNA（V, VI）は、プローブDNAと二重鎖を形成したときに、自由末端側（ナノ粒子表面の最外殻）にそれぞれミスマッチ構造、1塩基突出構造（ダングリングエンド）を与え、末端における1塩基変異は、DNA二重鎖の熱安定性にほとんど影響させない。Tmは49.6℃（V）であり、また末端1塩基突出はむしろ二重鎖を安定化させる58.1℃（VI）という高いTm値を示した。つまり（V）及び（VI）は、測定条件下においてプローブDNAと安定な二重鎖を形成していると考えられる。ところが、1 mM NaClが共存するDNAナノ粒子分散液を40℃に保持したうえで、上記末端変異を有するサンプルDNA（V, VI）を添加したとき、核酸端の変異を有するサンプルDNA（V, VI）を添加したとき、核酸端の変異を有するサンプルDNA（V, VI）を添加したときは、意図的に凝集は全く誘起されず溶液は透明なままであった（図1）。すなわち、プローブDNAとサンプルDNAが形成するDNA二重鎖のTmと

この特異現象を利用した末端変異識別は、プローブDNAとサンプルDNAの重錠のTmに関係なく（つまり厳密な温度制御を必要とせずに）極めて迅速な判定が可能であり、実用性という観点から大きな期待を抱かせるものである。現在のところ、DNA自由末端のわずか1塩基間の構造の違いがDNAナノ粒子の分散安定性を左右するこの「末端認識」とでも称すべき現象がなぜ起こるのかという点に関しては明確な解答は得られていないが、DNAナノ粒子上のDNA鎖の柔軟性に起因するナノ粒子間のエントロピー反発の変化が寄与しているものと推察している。

同様の末端認識現象はDNA修飾金ナノ粒子においても確認されており、[12]DNA鎖が基質に密に集積した粒子に共通した特性であると考えられる。す
なち、未修飾の金ナノ粒子分散液に塩を加えると直ちに凝集が起こる。しかし、直径15 nmの金ナノ粒子に15塩基のDNAを固定化したものは、2.5 Mという高濃度のNaCl水溶液中でも安定に分散することが示された。ところが、この粒子上のブロープと長さ・配列が完全に相補するサブループDNAを添加すると、0.5 M以上の塩濃度においては速かに凝集が起こり、赤から青へ溶液の色の変化が観察される（図2）。この凝集反応は、数分で平衡に達する速さなものであった。さらに、この塩濃度依存の凝集はナノ粒子上の塩基配列で異なった場合にしか起こらず、未端に塩基ミスマッチがあると、ナノ粒子は2.5 Mという高NaCl濃度でも安定に分散して赤色を示すことが明らかとなった（図2）。ここでは、明瞭な1塩基識別が室温（25℃）で達成されていることに注目していただきたい。

これらの系は、融解温度の差を利用して塩基形成率で正常配列と変異配列を見分ける古典的遺伝子診断法とは、原理が全く異なっている。実際、ここで用いた測定条件は、正常塩基配列と変異塩基配列で二重鍵を組む条件である。本システムは、DNA二重鍵末端の化学構造そのものを、ナノ粒子の分散安定性という尺度で見分けることに成功しているのである。では、この精密な末端識別をどのように実際に遺伝子診断に活かすことができるのであろうか、その答えはプライマリー伸長反応にある。詳細は、文献を参照されたい。

図2 DNA修飾金ナノ粒子の塩基配列特異的凝集現象

[NaCl]=1 M, 25℃、自由末端が相補的な塩基対（X=A）のときのみ青色に変化する。

から、所望の活性を持つ核酸を選択する手法である試験管内分子進化法を用い、様々なタンパク質や低分子化合物を認識し結合する機能性核酸（一本鎖RNAもしくはDNA）が単離・同定されている。これらの「合成」を意味するラテン語aptusからaptamer（アプタマー）と呼ばれ、センサー素子や核酸医薬品などへの応用が期待されている。

このアプタマーをDNAナノ粒子の特異的凝集システムに組み込み、ターゲット分子の認識を実証情報と変換・増幅できるシステムを開発した（図3）。DNAナノ粒子上のブロープDNAは、アプタマーの一部と相補的な配列となるように設計する。ここで重要なポイントは、アプタマーとブロープDNA間の重鎖形態がターゲットの認識・結合によって拮抗的に阻害されることである。系中に混じる第3のDNA（補助DNA）の塩基配列をブロープDNAと完全相補になるようにした場合、アプタマーがターゲットを認識することによってブロープDNAと補助DNAからなる二重鍵がDNAポリマー・ミセル層を形成され、その結果ナノ粒子の凝集が誘起される。一方、補助DNAの塩基配列をブロープDNAとアプタマーがつくる二重鎖の突出部位と完全相補になるようにした場合、試料中にターゲットが存在しなければブロープDNA/補助DNA/アプタマーの3成分から成るDNA二重鎖がDNAナノ粒子に形成され凝集が誘起されることになる。このように、補助DNAの塩基配列を変えるだけでターゲットの有無に対し、凝集・非凝集の両方の検出方式（positive検出、negative検出）を設計することができる。

筆者らは実際に、adenosine 5'-triphosphate(ATP)を認識する25 merのDNAアプタマーを用い、試料中のATPの有無をDNAポリマー・ミセルの特異的凝集による可視シグナルとしてpositive及びnegative検出することに成功し、この分析システムの有効性を実証した。また、DNAアプタマーの高いターゲット認識能は、構造の似通った他のモノヌクレオチド（GTP, CTP, UTP）を正確に識別し、ATPのみを選択的に検出することも確認された。現在、ATP以外にも様々なタンパク質や低分子化合物に選択的に結合するアプタマーが多数同定されている。これ
らを本システムに組み込むことで、任意のターゲット分子の検出システムが構築できるであろう。

DNA ナノ粒子の特異的存在観音現象は、ナノ粒子表層の DNA 鎖がこれと相補的な配列の RNA 鎖と DNA/RNA ヘテロ二重鎖を形成した場合においても同様に誘起される。機能性核酸の 1 つに、特定の分子などで応答して自己切断反応を引き起こすアプタザイムが知られている。17 このアプタザイムと、DNA ナノ粒子の組み合わせによる分子センサーの開発も進んでいる。18 標的分子が存在するとこれに

適合するアプタザイムの自己切断が起こり、その結果生じた切断リボ核酸 (RNA) が金ナノ粒子表面に固定化された DNA とハイブリダイズすることで、可視検出可能な粒子凝集を引き起こすという原理である (図 4)。本システムでは、ごく少量の切断 RNA が生成されれば DNA ナノ粒子の凝集を誘起することが可能であり、他のアプタザイムに依存したバイオ計測システムと比較して検出感度が高いという特徴がある。そのほか、このアプタザイムと DNA ナノ粒子を組み合わせた分子応答系を利用して、論理回

図 3 DNA ナノ粒子の特異的な凝集現象とアプタマームを組み合わせたターゲット分子検出システム

図 4 DNA ナノ粒子の特異的な凝集現象とアプタザイムを組み合わせたターゲット分子検出システム
路（logic gate）を設計することも可能であるが、本稿のスコープを外れるので文献を示すことにとどめた。[3]

さて、これらアプタマーやアプタサイクルとDNAナノ粒子を組み合わせたターゲット分子検出システムは、すべて最終的にDNAナノ粒子表面での二重鎖形成がトリガーとなって視情報を与えてることに読者はお気づきだろうか？これは、3節で紹介したDNAナノ粒子を用いた1塩基変異識別と原理的に同一といえる。それでは4節で紹介したような、DNAナノ粒子の高い末端認識能をターゲット分子の目視検出に拡張することはできないだろうか？

この問いに対する答えを最近、筆者らの研究グループは見いだしつつある。その1例を簡単に紹介したい。

重金属イオンのなかで水銀（II）イオン（Hg^{2+}）は、DNA二重鎖中のチミンチミン（T-T）ミスマッチペア部に取り込まれ、T-Hg^{2+}-Tペアを形成することが知られている。[20]末梢近傍にT-Tミスマッチペアを有するDNA二重鎖を担持したナノ粒子分散液は、高塩濃度条件下では安定に分散するが、Hg^{2+}共存下では分散安定性が大きく低下することがわかった。[23]これは、T-Tミスマッチ部位にHg^{2+}を取り込んだDNA二重鎖が、完全相補DNA二重鎖と共通した振る舞いを粒子上で示すことを示唆しており、DNAナノ粒子の水銀イオン検出への応用を期待させるのみならず本稿で紹介してきたDNAナノ粒子の特異的凝集現象が、どのようなメカニズムで誘起されるのか？という未だ解明できていない謎に対し、大きなヒントを示してくれているようにも思える。

6 おわりに

以上、生体高分子DNAと異種材料からなるDNAコンジョゲート材料、特にDNAナノ粒子を用いたバイオ計測について筆者らの最近の研究成果を概説した。DNAを含め、生体高分子のような動的な性質を持つソフトマザーが主役となる場では、これら高分子の電解質としての性質、イオンや水分子との関わりが複雑に絡み合いながら機能を発現しており、まだまだ未だの現象やチャレンジングな課題が数多く残されているように感じられる。バイオ計測のための生体機能利用という視点にとどまることができず、ソフトな界面の精密設計やその構造物性評価の重要性を認識し、物理学や化学などの基礎研究をこれまで以上に強力に推進する必要がある。筆者らは、このような学際研究の場として、文部科学省・新学術領域研究「ソフトインタフェースの分子科学」（略称：ソフト界面）を推進している。

バイオ計測技術は、生命現象の解明に寄与するのみならず、それによって蓄積された「知」を医療における診断や予防評価という具体的なかたちで社会に還元するための重要な架け橋としての役割を担うものであり、その重要性はますます高まっていくものと考えられる。DNAコンジョゲート材料を用いるバイオ計測技術の実用化に向けた更なる発展には、異分野の技術との積極的な融合による集学的な取り組みが有効であろう。実際、筆者らの研究グループは、DNAコンジョゲート材料とマイクロ科学との融合によって、従来ない新しいタイプの酵伝子診断デバイスの開発に成功している。

DNAコンジョゲート材料を用いるバイオ計測技術は、現在まだ発展途上の段階である。今後、異分野技術との融合、学際研究の推進によってDNAコンジョゲート材料の本質が解明され、新しいバイオ計測の世界を切り拓いていくものと期待している。

参考文献
9) 矢田場隆, 化学, 63, 40 (2008).
10) 宝田徹ほか, 機械材料, 22 (8), 13 (2002).
22) http://www.riken.jp/soft-kaihen/index.html