医薬品製造において脂肪族アルコールからアミンを合成する工程がしばしば必要となるが，安全で効率的な反応が必要である。近年，遷移金属を触媒としてアルコールとアミンを直接C-N線結合を形成する反応が藤田・山口ら，1) Williamsら2) により近年報告され注目を集めている。この反応は，遷移金属を介して分子間で水素が移動する“borrowing hydrogen”機構で進行すると考えられ，アルコールは触媒に「水素を貸し」てアルデヒドに酸化されるがアミンは反応してイミンを形成したのち，再び触媒から「水素を受け取り」第二級アミンを生成する（図1）。本法の特徴として①一段階で目的物に変換できる（高収率，溶媒量，廃棄物の削減）②副生成物を水のみで容易に除去できる③原料の入手性が良い（アルコールとアミン）④触媒量の選択が容易でアミン反応が進行するなど，プロセス化学的観点からも有用性が高く，アトムエコノミーに優れた反応である。

Berlinerらはこの反応を実用化に向けて改良し，グリシントランスポーター1（阻害剤PF-03463275）のキログラムスケールでの製造に成功したので紹介したい。3) 藤田・山口らの方法に基づき，（Cp^*IrCl_2）触媒存在下，原料のアルコールとアミンをトルエン溶媒中100℃で加熱すると65%で目的物が得られた。しかし1.5kgスケールで製造を行ったところ，反応が途中で停止して原料が大量に残存し，治癒薬として用いるためにカルネン製が必要となった。

いかに再現性ある反応を実現するかが，プロセス化学者の腕の見せどころである。反応に影響する因子を精査したところ，触媒活性を保つために水の存在が必須であることが分かった。通常の反応装置ではトルエンと共沸して水が除去されるため，圧力容器を用いて密封条件で加熱反応を行うことで，触媒量を0.05mol%以下で低減した場合も76%の収率で目的物1を得ることができた（図2）。またN-メチルピロリンやDABCOなど，第三級アミンの添加が収率向上に寄与することも分かった。

抽出操作は必要であり，反応後2-プロパノール（IPA）を加えて濃縮し，塩酸を加えて1を析出させることで，結晶中の残留イリジウム量を10ppm以下に制御できた。本論文により，新しいケミストリーである“borrowing hydrogen”反応が大量合成に応用できることが示された。今後，本反応はC-N線形成における重要な選択肢の1つであると考える。また，アンモニアやアンモニア塩を塩素源として，アルコールを第一級アミンに変換できる触媒として開発を進めれば，官能基交換の選択肢も広がる。6) 真に実用的な分子変換反応の開発は，有機合成化学者にとって挑戦しにくいあるテーマである。

図1 Borrowing hydrogen 機構

図2 キログラムスケールでの反応条件