Effect of Experimental Factors on Water Purification of Reservoir with Carbon Fibers

Akira Kojima*1, Hisami Matsumoto*1, Yoichi Kamiishi*2, Makoto Sato*2, and Sugio Otani*3

*1Gunma National College of Technology, 580 Toriba, Maebashi, Gunma Pref., 371-8530, Japan
*2Textile Research Institute of Gunma Prefecture: 5-46-1, Aoi-cho, Kiryu-shi, Gunma, 376-0011, Japan
*3Research Institute of Science and Technology, Tokai University: 2-28-4, Tomigaya, Sibuya-ku, Tokyo, 151-0063, Japan

Abstract: Carbon fibers, to which large amounts of aquatic microorganisms adhere, may have a capability of decomposing the pollutants in water. Thus, we investigated the purification of polluted reservoir water using carbon fibers in a concrete circulating waterway. The circulating waterway was made from a reinforced concrete U-form gutter (30 cm in depth, 30 cm in width). This waterway was 10 m in circumference and its capacity was 0.9 m³. The water pumped up from the reservoir was circulated in the waterway and then aerated. In this work, we used 50-cm-long PAN-based carbon fibers (Toray T-300 12K).

The carbon fibers were attached at one end to a frame, and the other end was free to move in the circulating water. A large amount of sludge adhered to the carbon fibers that were allowed to move freely in the waterway. The clarity of the treated water increased to above 100°. In an artificial circulating waterway, the addition of carbon fibers could reduce the concentrations of Ammonium-nitrogen and Phosphate-phosphorus throughout the duration of the experiment. Carbon fibers with high modulus and small diameter could effectively come into contact with polluted water by being free to move in the water.

KEYWORDS: Carbon fiber, Water purification, A rise in Transparency, Denitrification, Deposphorization, Sunlight

(Received 21 February, 2000; Accepted 10 October, 2000)
1. 緒 言

河川、湖沼、および海洋などの水環境は、人間活動の影響を直接あるいは間接的に受け、水質汚濁が生じる。水質汚濁とは、生活系、工業系、および農業系排水などに大量に含まれている有機物に由来する、有機性汚濁は、自然界的水環境に流入すると、そこに生息する生物（細菌、藻類、微生物類など）に働き、摂取・分解され低減する。しかし、生物の浄化能力を上回る污濁物が流入すると、水質汚濁はますます進行する。そこで、水質を浄化するには、本来の水環境が有する浄化能力を、より人工的に増強させることが必要である。

水域の自浄作用は、固体（基盤）の表面に形成された生物膜が、排水中に含まれる汚濁物を摂取・分解することである。自浄作用に貢献する生物膜は、食物連鎖低レベルの生物、藻類および菌類から、食物連鎖高レベルの原生動物および微生物に由来する、排水中の有機物質は、生物膜中の細菌などの作用によって分解され、最終的には炭酸ガスと水になる。また、腐敗、リンおよびその他の無機物を取り込んで成長した藻類などの微生物は、动物プランクトンや微小動物などの食物源として捕食される。生物の遺骸も有機物であるから、これらを分解し、水や炭酸ガスに戻すのが細菌やカビ類の役割である。浄化の進行とともに生物膜が肥厚し酸素が不足していくと、嫌気性層が形成される。嫌気性層では、有機物の嫌気的分解が行われ、分解の終末産物として炭酸ガス、水素、硫化水素、窒素およびメタンなど発生する。生物膜内の微生物は、増殖や成長のために栄養や捕食などの活動を行い、基材上より安定した生態系を築いている。水域の浄化能力は、生物膜の量と質に依存する。生物による水質浄化の促進は、単位面積当たりの生物膜の表面積を増加させ、生物膜と水との接触を効果的に行うことである。

生物膜形成用接触基材として利用される接触材は、プラスチック製のチューブ、板状、球状、細長い形、バオニウム状などがある。これ以外に砂、礫、貝殻、木炭などの自然素材も用いられている。様々な形態の接触材は、その用途によっても異なるが、長期の耐久性に優れ、軽量であること、そして表面積および空隙率の大きいことが要求される。

最終、木炭を接触材とした水質浄化が各地で試みられているが、石炭質構造をもつ木炭は、炭化として優れており、付着した微生物によって汚濁物の処理を共有することで注目されている。炭素材料は、微生物などの生物と親和性が高いという性質を持つ。木炭以外の炭素材料も、環境素材として多方面で利用されている。例えば、

活性炭による大気および水質浄化作用である。さらに炭素材料は、人工心臓弁として実際に使用されているとともに、人工歯根材などの生体材料としても研究されている。

小島は、ストランド状炭素繊維を活性汚泥中で摂取（ゆらゆらさせた状態）させると、大量の活性炭が、迅速かつ強度に固体の性質を示し、さらに、ストランド状炭素繊維は、ナイロン系、木繊維、および繊維などよりも数割の汚泥を固定した。また、活性炭と炭素繊維を含む器具を観察すると、浮遊性の汚泥量が少なくなり、水は透明になった。ストランド状炭素繊維を微細物で固着した実現は、汚泥は河川水や池水などの水質浄化可能な方法であるかと考えた。まず、子端実験として、汚泥汚泥水を入れた水槽（60ℓ）にストランド状炭素繊維を浸没した。河川水の透視は向上し、BOD値（生物化学的酸素要求量）が減少した。これは、炭素繊維に固着した微生物の代謝作用によるものであった（4-5）。小島らは、この現象を利用して、自然下での水質の浄化が可能になると考えた。このことを実現化するためには、フィールドでの基礎的データの収集が必要である。

本研究は、1997年6月から1999年12月まで、ストランド状炭素繊維を淵池に実際に配置して、水質浄化を試みた。その際の、水質浄化に関わる諸因子（処理流量、流人量、炭素繊維の形態、使用経年、季節、太陽光照射の有無など）、水質透視、溶存酸素、アミノ酸性窒素、COD（化学的酸素要求量）などに与える影響を検討した。

2. 実 験

2.1 淀池の概要

水質浄化実験は、群馬県高崎市内の化糞池（正寺池）に実施装置を設置して行った。正寺池は、面積6800m²、水深約1mである。本実験は、高速に都市汚水が流入し、生活排水が正寺池に流入し、底辺には汚泥のヘドロが堆積している。夏場には、底部で一部嫌気的分解が行われている。

2.2 実験装置

2.2.1 人工流水実験装置(1)

炭素繊維による淵池の水質浄化方法には、池内に直接炭素繊維を設置する方法があるが、淵池の容積、水量、および流量変化などに対応する、適切な炭素繊維量の把握が重要で、そこで本実験は、水の流量を小型の実験装置を設置し、池水を揚水ポンプで実験装置内に連続的に流し上げ、流水路を所定時間循環した後、淵池に戻す処理方法をとった。
実験装置(1)は、コンクリート製の側溝(U字型、深さ30cm、幅30cm、長さ2m)を長2m、幅4mの長方形に接続した循環水路である。水路の1周は約10m、容量は約0.9m³であった。揚水ポンプにて高圧気流を巻き上げられた池水は、流量を1.2～7.5ℓ/minに調節し、二枚翼型の給水機モーターを回転させることで、水路内を所定流速(約50cm/sec)で循環した。原水が装置内に留まっている時間(滞留時間)は、1.5～2.0時間で、曝気量は20ℓ/minであった。この人工流水実験装置(1)を用いて1997年6月から1997年12月まで、炭素繊維による水質浄化実験を行った。

2.2.2 人工流水実験装置(2)

正観寺池に流入する水は、浮遊性懸濁物質を含んでおり、降雨の場合には、それらが多量に装置内に巻き上げられる。そこで、1998年6月からは、実験装置(1)に新たに貯水槽(縦1.8m、横1.8m、高さ1m、槽容量3.2m³)と計量槽を設けた人工流水実験装置(2)に切り替え、1999年12月まで実験を行った(Fig.1)。貯水槽は、浮遊懸濁物質を水路内へ流入させないように、原水を一時貯め、それを沈降させた。貯水槽から流出した原水は、一部の池に戻され、もう一部は計量槽を通じて循環水路に流入した。流入量は、計量槽の仕切り板とコックを調節し、4.0～5.0ℓ/min(滞留時間3.8～3.0時間)にした。

Fig. 1 Experimental setup for artificial running water

2.3炭素繊維

炭素繊維は、PAN系ストランド(12K)を使用した。このストランド状炭素繊維1束は、12,000束のフィラメントからなる。炭素繊維は、直径7μm、密度1.77g/cm³、引張り強さ3.43GPa、引張弾性率239GPaである(6)。

使用した炭素繊維量は、予備実験の結果を参考にして求めた。予備実験では、水槽(60ℓ)中の汚泥河川水40ℓに、PAN系ストランド状炭素繊維(10K、35cm)を60束(使用重量:14.0g)使用した。本実験で使用した全炭素繊維量は、この予備実験結果を算出根拠とし、循環水路の容量0.9m³に換算した値である。所定本数のストランド状炭素繊維(長さ50cm)を、田の字型枠(幅30cm、高さ45cm、鉄筋枠)に結びつけ、循環水路内に浸漬した。ストランド状炭素繊維の片端は型枠に固定し、もう片方の他端は、水中で自由にばらばら、循環池に沿って動かすようにした(Fig.2)。型枠に結びつけた炭素繊維、本数および束ね方の異なる2種類(Aタイプ、Bタイプ)を使用した。Aタイプは、Fig.3の(1)に示すように、1束の横辺、縱辺および各辺の交点にストランド状炭素繊維の束を2束ずつ30ヶ所に結びつけた(12K×2束×30ヶ所)。また、Bタイプは、Fig.3の(2)のように、ストランド状炭素繊維の8束を3本の横辺に各3ヶ所ずつ、合計9ヶ所に配置した(12K×8束×9ヶ所)。AタイプおよびBタイプの炭素繊維束を固定した棒は、AタイプおよびBタイプ、それぞれ6束ずつ、合計12束を同時的に使用した。AタイプおよびBタイプに使用した炭素繊維束、束数、重量および表面積をTable 1に示す。Aタイプの6束分に使用した炭素繊維の使用量は、重量172.8g、表面積57.0m²、そして単位水量あたりの表面積を52.7m²/m³であった。Bタイプの6束分に使用した炭素繊維の使用量は、重量172.8g、表面積57.0m²、そして単位水量あたりの表面積を63.3m²/m³であった。両タイプを合計した炭素繊維の使用重量は316.8gとなり、総表面

Fig. 2 Sectional view of the circulating water way

Fig. 3 Appearance of carbon fibers: (1) A type; (2) B type
2.5 太陽光照射による水質への影響

夏季（6月～9月）の実験では、炭素繊維の袋状等が多く装置内の炭素繊維束が絡み合うように変形した。袋状の発生には、太陽光の影響が関与していると考えられるので、1999年11月14日に、実験装置（2）の貯水槽、循環水路に蓋を設置し、遮光下で実験を行った。期間中の流入量は4.0～5.0 l/min（滞留時間3.8～3.0時間）、曝気量は20 l/minであった。炭素繊維は、AタイプおよびBタイプ合わせて264束（12K，総使用重量105.6g）を使用した。

2.6 測定および観察

2.6.1 水質分析

1997年6月23日から12月18日までの、原水および処理水の水質分析は、工場排水試験法（JIS K 0102）に従い、下記①～⑧の諸項目について行った。実験当初（1997年6月～8月）における④～⑦項の測定は、パックテスト（共立大学大学院，簡易水質分析製品）を使用し、大まかな値を求める。分析項目と測定方法を列記する。

①水温および溶存酸素（DOと略記）：隔間型ガルバニセル電池式DOメーター（東亜電波工業㈱，DO-14P）を使用してDOを測定した。水温は、DO測定時に、計測された値を記録した。
②水素イオン濃度（pHと略記）：試験管に試水を取り、pH指示薬を加えて発色させ、発色した試水の色と標準色を比較しpH値を読み取る比較管法で求めた。
③透光度：100cm透光度計を使用。透光度計に試水を入れ上部から透視し、底部にいたした標準色の二重十字線が識別できるときの水位（cm）を測定した。1cmは1'に相当する。
④アンモニア体窒素（NH₃-Nと略記）：インドフェノール基を測定原理とし、試業（共立理化化学研究所LR-シリーズ，試業Na17B）を試水に加えて発色させ、分光光度計（株島津製作所，UV-1200）によって測定した吸光度（677 nm）から濃度を測定した。
⑤亜硝酸亜窒素（NO₂-Nと略記）：グリース・ロミン（GR）変法測定原理とし、試薬（共立理化化学研究所LR-シリーズ，試薬Na18）を試水中に加えて発色させ，①と同様に吸光度（539 nm）から測定した。
⑥硝酸亜窒素（NO₃-Nと略記）：NO₂-NをNO₃-Nに還元した後，⑤項のGR法を一部変更する方法で求めた。試薬（共立理化化学研究所LR-シリーズ，試薬Na19）を試水中に加えて発色させ，①同様に吸光度（539 nm）から測定した。
⑦リン酸塩素（PO₄-Pと略記）：モリブデン青法を測定原理とし、試薬（共立理化化学研究所LR-シリーズ，試薬Na12）を試水中に加えて発色させ，⑤と同様に吸光度（709 nm）から測定した。
⑧化学的酸素要求量（CODと略記）：簡易式CODメータ
炭素繊維蓄積物の重量測定および顕微鏡観察

実験装置に浸漬させた炭素繊維束は、水路より引き上げ、そのままの状態で約1分間放置し水を切った。その後、重量既知のボリパッケラ（15 L）の中に炭素繊維を型枠ごと入れ重量を求めた。炭素繊維への囲着物重量は、測定重量から炭素繊維と型枠の重量を引いて求めた。また、炭素繊維束の型枠に固定されていない方の先端を約1 cmを切り取り、囲着物を低相差顕微鏡（オリンパス光学眼、BHII）で観察した。

3. 実験結果

3.1 炭素繊維束の観察

実験装置（1）および実験装置（2）に設置したストランド状炭素繊維は、流水中ではららかけて扁平状またはネット状に広がった。はらけた炭素繊維フィラメント1本1本に汚泥が固着し、全体的に茶色になった。また、各フィラメントが互いに寄り集まり、茶色の太いひも状になった。Aタイプは、炭素繊維が枠に2束ずつ固定されているため、各束が互いに縦さ1つの方になった（Fig. 4 の（1））、同様に、Bタイプも8束ずつ固定されているため、それらが互いに絡んで大きな塊を形成した（Fig. 4 の（2））。

炭素繊維囲着物中の微生物の挙動は、季節によって変化し、実験装置は、屋外に設置しているの、水路中の炭素繊維は太陽光に直接さらされた。そのため、夏場（6月～8月）は、炭素繊維束間に纖維状の緑藻類などが繁茂し、それらから発生したと思われる気泡が、炭素繊維束間に保持され、炭素繊維束は水面に浮上した。さらに繊維間に、濡れ葉の固有生物であるオオウスリやサカマキガイなどが多く生息していた。秋から冬になると、炭素繊維を覆っていた繊維状の藻類などは茶色に変化し、繊維束間からの気泡の発生はなくなかった。

夏場の夕立や長雨などで溜め池が満たれると、溜め池内の浮遊性懸濁物質は、装置内に多量に浄化され、それらは、炭素繊維束に付着し、炭素繊維束の操縦を低下させた。付着汚泥成分の分析をするため、炭素繊維束から汚泥を剝落させて採取し、乾燥後、X線回折分析を行った。汚泥中の無機含有成分は、緑泥石および長石であった。これらは、実験場所の土壌固有の粘土鉱物に起因する、シルト類と呼ばれてるものであった。

3.2 炭素繊維束への囲着汚泥重量

循環水域（1）内の炭素繊維束は、実験開始直後では、循環流に沿って平行に消失していた。浸漬日数が経過するとともに、炭素繊維束には徐々に汚泥が囲着始めた。実験開始時（1997年6月23日）から1ヶ月間、炭素繊維束への囲着汚泥重量の経時変化をFig. 5に示す。囲着汚泥量は、両タイプともほぼ直線的に増加したが、Bタイプの方がAタイプより大であった。1ヶ月後の汚泥囲着重量は、Aタイプでは1柱につき900 g、Bタイプでは3400 gであった。

Fig. 5 Weight variation of adhesives attached to carbon fibers fastening thing (1997.6.23～7.30)：(●) A type；(□) B type.
Experimental setup：1 type
Number of used carbon fiber：792 strand
Flow rate：1.2～7.5 l/min

The direction of the flow

Fig. 4 State of carbon fibers in running water：
(1) A type；(2) B type
験開始1ヶ月後になると、徐々に水路底部に下がり始め
た。特に、水面付近にあるBタイプの炭素繊維束は、固着
物の肥大化したため、先端部が水路底部に下がり、型枠の
底部付近にある炭素繊維束を覆った。それに対し、Aタイ
プでは、水面付近にある炭素繊維束の固着物が肥大化し
たが、全体的には浮上していた。4ヶ月後(1997年10月)
の固着重量は、Bタイプではさらに増大し、炭素繊維束全
体は汚泥とともに水路底部に埋もれていた。一方、Aタイ
プの炭素繊維束は、固着物が肥大化したが、Bタイプより
数ヶ月間以上も長く循環流に沿って漂っていた。炭素繊
維束の漂りは、汚泥や粘土類が固着し、それらが肥大
するより少なくなった。そこで、炭素繊維束を装置内から
取り出し、水を張ったポリバケツ内で炭素繊維束を上下
させて、固着物を強制的に取り除いた。その後、再び装
置内に炭素繊維束を戻して、炭素繊維束の漂りを確保し
た。

次に、実験装置(2)を用い炭素繊維使用量を実験開始時
より3分の2(528束)に減らして264束として、実験を
1998年11月から12月までの1ヶ月間行った。その際の固
着汚泥重量の経時変化をFig.6に示す。

炭素繊維を減量させた1束分の固着重量は、両タイプ
とも直接的に増加した。炭素繊維量の減量前では、Bタイプ
の方が多く汚泥を固着し、減量後はAタイプの方が大であ
った。また、炭素繊維束は、両タイプとも沈むこととな
く水中に漂っていた。

3.3 流入量による影響

実験装置(1)への原水の流入量を調節しながら、1997年
7月から8月に実験を行った。その際の炭素繊維量は、12
K×72束(総使用重量316.8g)であった。実験は、流入量
1.2ℓ/分から、3.0ℓ/分、4.8ℓ/分、および7.5ℓ/分とさせ
ながら、各1日間ずつ実験を行った。各流入量
における実験装置(1)内での原水の滞留時間は、それぞれ

12.5時間、5.0時間、3.0時間および2.0時間であった。各
流入量に調節してから1日後の原水と処理水の水質分析
結果をTable 3に示す。

実験期間中の透過度は、原水と処理水とも100以上で
あった。処理水のNH₄-N、NO₃-NおよびPO₄-P濃度は、
各流入量とも、原水に比べ著しく減少した。原水と処理
水との各濃度の低下度合いは、NH₄-Nでは60％、
NO₃-Nは30～70％、そしてPO₄-Pは50％程度であった。
それに対しNO₃-Nの濃度は、同一か、あるいはやや増大
した。

3.4 季節による影響

季節の違いによる水質への影響を知るために、実験装置
置(1)を用いて、夏季(1997年7月24日～8月8日)、秋季
(1997年10月15日～10月30日)および冬季(1997年12月2日～

<table>
<thead>
<tr>
<th>Table 3</th>
<th>Effect on water quality by the inflow (Packed test)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Inflow [L/min]</td>
<td>Retention Time [hour]</td>
</tr>
<tr>
<td>1.2</td>
<td>12.5</td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>5.0</td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td>4.8</td>
<td>3.0</td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td>7.5</td>
<td>2.0</td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Experimental setup: 1 type, Number of carbon fiber: 792 strand, Water quality: measured by packed test.
Table 4 Effect on water quality by the season

<table>
<thead>
<tr>
<th>Season</th>
<th>Inflow [L/min]</th>
<th>Retention Time [hour]</th>
<th>Sample water</th>
<th>Temperature [°C]</th>
<th>Transparency [m]</th>
<th>NH₄-N [mg/L]</th>
<th>NO₂-N [mg/L]</th>
<th>NO₃-N [mg/L]</th>
<th>PO₄-P [mg/L]</th>
<th>Date</th>
</tr>
</thead>
<tbody>
<tr>
<td>Summer</td>
<td>4.8</td>
<td>3.0</td>
<td>Raw water</td>
<td>23.5</td>
<td>&gt;100</td>
<td>0.40</td>
<td>0.03</td>
<td>0.69</td>
<td>0.13</td>
<td>1977.</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Treatment water</td>
<td>24.6</td>
<td>&gt;100</td>
<td>0</td>
<td>0.12</td>
<td>0.46</td>
<td>0.07</td>
<td>7.31</td>
</tr>
<tr>
<td></td>
<td>7.5</td>
<td>2.0</td>
<td>Raw water</td>
<td>25.5</td>
<td>&gt;100</td>
<td>0.67</td>
<td>0.06</td>
<td>1.15</td>
<td>0.17</td>
<td>1977.</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Treatment water</td>
<td>26.0</td>
<td>&gt;100</td>
<td>0</td>
<td>0.06</td>
<td>0.69</td>
<td>0.07</td>
<td>8.1</td>
</tr>
<tr>
<td>Fall</td>
<td>4.8</td>
<td>3.0</td>
<td>Raw water</td>
<td>16.7</td>
<td>74.5</td>
<td>0.94</td>
<td>0.12</td>
<td>0.74</td>
<td>0.18</td>
<td>1977.</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Treatment water</td>
<td>17.1</td>
<td>&gt;100</td>
<td>0.35</td>
<td>0.19</td>
<td>1.00</td>
<td>0.08</td>
<td>10.17</td>
</tr>
<tr>
<td>Winter</td>
<td>6.0</td>
<td>2.5</td>
<td>Raw water</td>
<td>18.1</td>
<td>55.5</td>
<td>0.77</td>
<td>0.17</td>
<td>0.75</td>
<td>0.20</td>
<td>1977.</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Treatment water</td>
<td>18.8</td>
<td>&gt;100</td>
<td>0.19</td>
<td>0.12</td>
<td>0.89</td>
<td>0.11</td>
<td>10.20</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Raw water</td>
<td>8.3</td>
<td>45.0</td>
<td>0.81</td>
<td>0.07</td>
<td>0.57</td>
<td>0.18</td>
<td>1977.</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Treatment water</td>
<td>9.2</td>
<td>&gt;100</td>
<td>0.20</td>
<td>0.06</td>
<td>0.56</td>
<td>0.06</td>
<td>12.15</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Raw water</td>
<td>10.3</td>
<td>56.5</td>
<td>1.07</td>
<td>1.20</td>
<td>1.60</td>
<td>0.17</td>
<td>1977.</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Treatment water</td>
<td>10.7</td>
<td>&gt;100</td>
<td>0.29</td>
<td>0.09</td>
<td>0.80</td>
<td>0.06</td>
<td>12.18</td>
</tr>
</tbody>
</table>

*Ammonium-nitrogen, Nitrite-nitrogen, Nitrate-nitrogen, Phosphate-phosphorus.

Experimental setup: 1 type, Number of carbon fiber: 792 strand, Water quality: measured by packed test.

12月18日にそれぞれ実験を行った。その際の炭素繊維量は、12K×792束（総発生量316.8g）であった。夏季および秋季における流入量は、4.8 l/min（滞留時間3.0時間）、冬季では6.0 l/min（滞留時間2.5時間）であった。各季節ごとの原水と処理水の水質分析結果をTable 4に示す。

炭素繊維による水質浄化の度合いは、季節によって異なり、原水の透明度は、季節によって異なり、100'から約50'にまで低下した。しかし、処理水では、いずれの場合も100'以上であった。また、処理水のNH₄-NおよびPO₄-Pの濃度は、原水に比べ秋季および冬季でも著しく減少した。それに対し、NO₂-NおよびNO₃-Nの濃度減少は、わずかであった。

### 3.5 炭素繊維減容による水質への影響

実験装置(2)を用いて1997年6月より使用していた炭素繊維束を1998年10月9日に、3分の1を間引いて、12月10日までの約2ヶ月間実験を行った。その期間中の原水と処理水の透明度およびCODの経時変化をFig.7にそれぞれ示す。

処理水の透明度は、炭素繊維束の減量後も、100'以上を維持していた。同様に、CODは原水よりも低し、水質は浄化された。

### 3.6 太陽光照射による水質および固着物への影響

1999年11月4日～12月8日の約1ヶ月間、実験装置(2)全体を含め置い実験を行った。その際の炭素繊維束は、12K×264束（総発生量105.6g）で、流入量は4.0～5.0 l/min（滞留時間3.8～3.0時間）であった。

![Fig. 7](image)

**Fig. 7** Change of water quality after thinning out the quantity of carbon fibers (1998.9.30～12.10):

(O) Raw water; (■) Treated water

Experimental setup: 1 type and 2 type
Flow rate: 4.0～5.0 l/min

太陽光遮光下での炭素繊維固着物は、フィラメント1本1本に粘性をもって固着し、繊維束が寄り集まり一つの塊をなしていた。そして、固着物は、炭素繊維束から剝離することなく、太陽光照射下的季節において
は、緑藻類のHydrodictyon属（アミドロ）およびSpirogyra属（アオミドロ）が群集を成して、水路上に繁茂していた。しかし、太陽光を遮ると、このようなことは見られなかった。遮光下で観察された固着微生物には、珪藻類（Navicula属、Cymatopleura属）、原生動物の横毛虫類（Euplotes属、Vorticella属（ツリガネムシ）、Epistyliis属）、袋形動物のワムシ類（Rotaria属（ヒルガタワムシ））、線虫類（Rhabdolaimus属）および緑藻類などが見られた。太陽光の照射下の場合では、前述の他に緑藻類Clorasterium属、Oedogonium属などが見られた[7]。

原水と処理水の透視度、およびCODの経時変化をFig.8に示す。処理水の透視度は、原水よりも向上し、遮光期間中100％以上を維持していた。装置全体に蓋をして、太陽光を遮光しても、処理水のCODは原水よりも低くなった。

Fig. 8 Effect of shielding the sunlight on water quality (1999.11.4~12.8)：( ) Raw water；(▲) Treated water
Experimental setup：2 type Number of used carbon fiber：264 strand Flow rate：4.0~5.0 l/min

4. 考察

4.1 炭素繊維への汚泥着着

ストランド状炭素繊維は、流れのある状態で繊維先端を循環流に漂わせながら、大量の汚泥やシルトを固着した。炭素繊維にシルト類が強固に保持されたのは、炭素繊維上に固着した糸状菌、植物性プランクトン、およびそれらを餌とする動物性プランクトンが分泌する粘着性物質（多糖類など）の介在によるものと考えられる。

炭素繊維に早期から大量の汚泥が固着したのは、炭素繊維束が水中で扇状またはネット状に幅広く分散していれば中に固着していると考えられる。各炭素繊維のフィラメントは、浮遊性物質の捕捉力に優るとともに、水中の溶存酸素を取り入れ微生物を繁殖させるのに適していた。使用した二種類の炭素繊維束（AタイプとBタイプ）のうち、汚泥固着量が多かったのは、Bタイプであった。Bタイプは、1株に炭素繊維束の房（12K×8束）が9ヶ所に固定したので、Aタイプよりも繊維密度が高く、水中の浮遊物質の捕捉に優れていたからである。しかし、固着物量が増大すると、水質浄化には不可欠な水中での摂餌が不足するため、固着物の取り除きが必要になった。それに対し、Aタイプは、繊維密度がBタイプより低いので、炭素繊維束と固着物からなる汚泥塊が、通水性に優れ、摂餌を持続することから固着物を取り除く必要はなかった。

4.2 炭素繊維による水質浄化

炭素繊維に固着した汚泥や微生物などの集合体には、主として好気性微生物が成長していると思われる。水中の汚泥物は、これら微生物集合体の摂餌・代謝作用で、水や炭酸ガス等に分解された。これ、炭素繊維を担体とした生物膜法による下水処理による、炭素繊維を用いた水質浄化モデルとして、「尾崎・大谷モデル」が提案されている。炭素繊維は、その自体のもつ極細（直径7μm）と高弾性率（10000～30000GPa）によって、水下での嵩高な形状を保つ能力をもって、この炭素繊維には、斜面ににくい汚泥が大量に固着し、また嵩高な形状を形成するので浮遊性汚泥物質（SS）の急速捕捉を可能にする。嵩高な炭素繊維は、水中でゆらゆら揺れるより、繊維間の間隔が変化し、それによって水の移動が生じ、一種のポンプ機能を示す。これにより、炭素繊維に固着した汚泥塊の内部および外部における、水や溶存酸素などの物質移動が促進され、固着微生物の活性が持続すると考えられる。斜面にくない汚泥塊の内部には、好気相だけではなく分散的に嫌気相も形成される[8]、これらの微生物の自己増殖および分解によって、安定した食物連鎖が構築されているのであろう。

さらに、松崎らによって、炭素材が存在すると増殖が特に促進されやすい細菌、好炭素菌（Bacillus Carboniphilus）の存在が明らかにされた。その機構は、炭素材のグラフェイト結晶構造がその周囲からの電磁波を取り入れ、それをある特定周波数の音波（パイオソニック、数kHz～数MHzの領域）に転換し、好炭素菌に増殖シグナルとして送るというものである。特定周波数の音波は、微生物の増殖を促進するが、他の周波数は増殖を抑制させる効果を持
つと、好気性菌は、大気、水中、土壌中に広く分布しており、炭素繊維への水中微生物の大量固着現象は、炭素の示す生物に対しての特殊作用が影響すると考えられる。すなわち、炭素繊維に好気性菌が初期に固着し、それを経て汚泥や動植物組織が炭素繊維の周りに固着するのであろう。バイオソニックは、固着した汚泥塊中に存在する多様な微生物の増殖を促進したり、抑制する。固着微生物は、このようなして活性化される。さらに、微生物の代謝生成物により粘着性が増大し、炭素繊維から汚泥が剥離しにくくなる[9-10]。

本実験で使用したストランド状炭素繊維は、水路内の循環流に沿って漂っている。水中の汚泥物質は、水中でばらばらに炭素繊維に接触することによって、生物による分解を受ける。これらのことは、炭素繊維のもっと適度に張りのある柔軟性（弾性率）を細さ（高表面積）が、汚泥物質を捕捉しやすくし、水との効果的な接触を図っていることによると考えられる。

原水中のNH₄-Nは、亜硝酸菌（アノミニア酸化細菌）にによる酸化でNO₂-Nに、ついて硝酸菌（亜硝酸酸化細菌）でNO₃-Nにと孵化され、その後は還元性物質によって脱窒される。炭素繊維表面に形成されたこれらの細菌類からなる生物膜は、増殖することで、NH₄-NがNO₂-Nに酸化され、NO₂-Nは著しく減少したと考えられる。一方、炭素繊維と固着物との間の細胞は、分散的に嫌気状態に形成されることから、NO₂-Nが減少したと考えられる。NO₂-N濃度が減少したのは、NH₄-Nの酸化速度に比べて、NO₂-Nの進化速度が遅いことによるのである。PO₄-Pは、植物プランクトンに吸収され、さらにそれらを捕食した動物性プランクトンなどの微生物に摂取され、減少したと考えられる。

本実験の、好気的条件下で実験を行ったことか、NH₄-NはNO₂-NおよびNO₃-Nにまで生物的に酸化分解され、NO₃-N濃度が増大した。これは、DOがほぼ飽和状態あったことから、還元反応を引き起こす硝化反応が生じにくい条件であったためであろう。

4.3 有機物に及ぼす影響

4.3.1 季節による影響

原水の透湿度は、冬季には水温低下や降雨量の減少などの影響により低下し、一方、処理水の透湿度は、季節に関係なく常に100%以上であった。これは、炭素繊維による浮遊汚泥物質（SS）の優れた捕捉能力を示すものである。

NH₄-NやPO₄-Pは、炭素繊維表面上に形成された生物膜との接触酸化によって、いずれの場合も減少した。それに対し、NO₂-Nから窒素ガスへの脱窒作用は、秋季および冬季で少なくない。これは、水温の低下に伴い水中的DOが増加し、嫌気下で脱窒を行う微生物が活動しにくくなったためと考えられる。

4.3.2 炭素繊維使用量による影響

炭素繊維使用量を減少させると、生物膜の肥大化による繊維間のつまりや、固着物の剥離などの問題が改善され、水質が良好となった。これは、炭素繊維束間の通水や挿入ぎがスムーズになり、水と繊維との接触が効率良くなったためである。

本実験の炭素繊維使用量は、316.8gであった。これは、処理水1m³あたり352.0gになる。次に、炭素繊維を32(12.2g, 235.8g/m³)に低減させても、水質浄化は可能であった。炭素繊維束の固着微生物量は、使用炭素繊維量（または、表面積）に比例して増大し、その分、水質浄化に共に貢献するものと考えていた。しかし、使用炭素繊維量の少ない方が、炭素繊維の挿入を考慮しやすく、炭素繊維束内の水の流れを効率よくし、水質浄化を行えた。よって、使用する炭素繊維を、表面積の広さを効率よく生かせる形態であれば、炭素繊維束をさらに少なくすることも可能である。

本実験で使用した炭素繊維の形態は、ストランド状炭素繊維を、長さ50cmの形状にしたものであった。しかし、少量にはならず炭素繊維束の先端に、水中の浮遊性汚泥物質が多く固着するため、負荷がかかり、炭素繊維束全体が水路底部へ沈んだ。これを改善するには、繊維長を短くすることや、水質浄化に適した形態に適応することが必要となる。

4.3.3 太陽光照射による影響

実験装置全体に日に当たった。太陽光を遮ったところ、処理水の透湿度は100%以上に向上し、COD値は水温低下し、太陽光照射下と同様に水質浄化が可能であった。また、緑藻類が遮光によるストレスのため減少しても、水質浄化が進行した。太陽光照射下では、緑藻類などのが蒸発し、それらが光を吸収すると、炭素繊維に絡み閉塞を起こす原因となる。よって、それらを防ぐ手段として、太陽光遮蔽下で炭素繊維による水質浄化を行うことも効果的である。

一般に、下水処理では、処理装置内での藻類の発生にによる目詰まりや閉塞を防ぐために、遮光下で行われる場合も多い。このような水酸化処理プロセスで炭素繊維を用いた場合、水質浄化には太陽光照射の有無に関わらず、炭素繊維にどのような微生物群を優先的に固着し、増殖させるかが重要になる。

5. 結 論

炭素繊維は、その表面に水中の好気性微生物を固着させ、循環流に流しながら汚泥物質を分解した。炭素繊維
は、微生物が着したり過材および接触担体として機能した。また、炭素繊維を配置した人工流水実験装置は、夏季、秋季および冬季とも、処理水の透明度を100％以上に向上させ、原水中のNH₄-NおよびPO₄-Pを減少した。本実験で、溶け池水（0.9m³）の水質浄化に使用した炭素繊維量は、処理水量1m³あたり352.0gであったが、その量を2/3（235.8g/m³）、そして1/3（117.3g/m³）に減じても、水質浄化が可能であった。さらに、装置全体に蓋を施し、太陽光遮光下で処理を行っても、太陽光照射下の処理と変わらない水質浄化ができた。ただ、池全体を浄化するには、本実験結果を基礎に装置の大型化、運転条件の検討などが必要であり、これらは今後の課題である。

本研究は、新エネルギー・産業技術総合開発機構（NEDO）の地域コンソーシアム研究開発事業「炭素繊維軟組織への微生物汚着現象を利用した水環境整備技術の開発（略称：炭素一水環境整備」の一環によって行った。

謝辞

本実験を行うにあたり多大なるご協力を頂いた大永ドリーム㈱永島明氏に深く感謝いたします。

文献
1. 都留信也編、「微生物とその応用①環境と微生物」、共立出版、p.21（1979）。
2. 谷田本光克、伊藤義、大平辰朗、大庭喜八郎、木村学会誌、41、425-432（1995）。
3. 共寄材料学会編、「新・共寄材料入門」、リアライズ社、p.214-223
4. 小鳥昭、月刊水、39、35-40（1997）。
5. 小鳥昭、平野信彦、環境技術、26（1997）。
6. 炭素繊維懇話会、「炭素繊維の応用技術」、シーエムシー社（1986）。
7. 小島豊男、須藤隆一、千原光雄編、「環境微生物図鑑」、講談社（1997）。
8. 須藤隆一、「環境浄化のための微生物学」、講談社、p.136（1995）。
9. 大谷杉郎、炭素、Na183、p.162-167（1998）。
10. 梨橋道生、遠藤桂、炭素、Na184、p.213-218（1998）。