一般報文

染色されたアクリル繊維上の塩基性染料の抗菌活性

武庫川女子大学生活環境学部
澤 裕子・甫天正靖

Antibacterial Activity of Basic Dyes on the Dyed Acrylic Fibers.

Yuko Sawa and Masanobu Hoten

Department of Human Environmental Sciences, School of Human Environmental Sciences,
Makogawa Women’s University, 6-46, Ikebiraki-cho, Nishinomiya, 663-8558, Japan

Abstract: Antimicrobial activity against 2 species bacteria of six basic dyes and Benzalkonium chloride as a retarding agent in the dyed acrylic fibers was investigated by mean of JIS test method (JIS L1902). To examine the effect of the dye concentration in the dyed fibers on antibacterial activity, it was represented by SOR that is the ratio of dye concentration in the dyed fibers to its relative saturation value. Result of JIS test method demonstrated that antibacterial activity of the dyed fibers was obviously revealed and related to minimum bactericidal concentration (MBC) of the respective dyes and Benzalkonium chloride depending on the chemical structure of them. Antibacterial activities in the dyed fibers with the basic dyes of triphenyl-methane, azine, azo and thiazine were compared, which decreased in that order. And antibacterial activity was apt to increase with SOR. Bactericidal activity against Staphylococcus aureusIFO12732 was shown in all dyes except thiazine, whereas that against Escherichia coli K12 W3110 was low activity. Benzalkonium chloride was equally effective against both bacteria and improved antibacterial activity in the dyed fibers with lower SOR level of Malachite Green.

(Received 18 October, 2000; Accepted 12 March, 2000)

1. 論 言

抗菌剤は広い分野において古くから利用され、繊維加工分野における研究開発もこれらを種々の手法によって適用して進展してきた [1-4]。

今日では動物や天然鉱石など天然由来の抗菌防臭機能剤の安全性が注目を集め、なかでも植物由来のものは繊維用抗菌防臭加工剤をはじめ食品添加剤、化粧品基材、医薬用外品、浴用剤として広く活用されている [5-8]。また、これらの植物の多くは古くから染色に利用されているものもあり、染色性や染色堅牢度についての報道もある [9,10]。一方、天然色素と同様に合成染料の中にも塩基性染料のように抗菌性をもつものがあり、水藻生物に対する防汚剤などとして利用されている [11-13]。Fairbrotherらは合成染料について広範な殺菌スペクトルを得て、染料の抗菌性発現に関する報告を行った [14]。

しかし、天然、合成に関らずそれらの色素または染料による染色物が有する抗菌性についての報告は少ない。著者らは、さきに生薬およびハーブを色素として種々の染色を染色物について抗菌性に関する有益な結果を得ている [15-18]。本報では塩基性染料およびその染色物に着目しその抗菌活性に関する研究を行った。

本研究では基幹構造または置換基の異なる6種の塩基性染料を選択し、それらの染色濃度を変えて染色を行い繊維上に染着した染料濃度と抗菌活性の関係、染着した染料の化学構造と抗菌活性の関係について考察を行った。また、通常のアクリル繊維染色では不均染防止のためにカチオン型染料が用いられるが、これは酸性ケミカルの一種に抗菌作用を有する。そこで抗菌性と低濃度染色における染着効果を目的として、代表的な染料である亜化ベンザルコニウムを併用して調製した染色の染色物の抗菌活性についても併せて検討を行った。

2. 実 験

2.1 試料

2.1.1 繊維

本研究ではアクリル繊維「エクスラン」K型（日本エクスラン工業株式会社）原綿紡糸の繊維を使用した。試料布は細菌性アミラーゼを用いて70℃で30min酵素による処理を行い以下の実験に使用した。

2.1.2 塩基性染料

本研究で用いた6種の塩基性染料の化学構造をFig.1 に示す。トリフェルニルメタン系のMalachite Green (MG), Crystal Violet (CV), Diamond Green (DG), クレシア系のMethylene Blue (MB), アシン系のSafranine O (SAF) およびアシン系の
2.2.2.2 染着量の定量
染料試料の染着量は、プチラクトン（三菱化学株式会社）を溶媒に用い、比色定量を行い求めた。吸光度測定には分光光度計 UV-2200（島津製作所）を使用した。また、繊維に吸着された染料塩の濃度を塩酸で下（pH3± 0.4）で0.2M リン酸トリクロル化物による滴定を行い求めた。終点指示薬にはメチルオレンジを用いた。

2.3 抗菌性評価
2.3.1 供試菌
抗菌性の評価には Staphylococcus aureus IFO12732（S. aureus）および Escherichia coli K12 W3110（E. coli）の2菌種を使用した。

2.3.2 接種菌液の調整
接種菌の培養にはニュートリントラクトン（Difco）を用いた。メンプランフィルター（孔径 0.45 μm, 富士写真フィルム株式会社）を用いて集菌し、無菌水で出汁して菌懸濁液を調製した。懸濁液を滅菌水で希釈し、低濃度の接種菌液を製剤した。

2.3.3 試験方法
2.3.3.1 最小殺菌濃度（MBC）の測定
滅菌水を用いて調製した塩酸製すりおよびBCの1/2希釈液0.5 mlに2菌懸濁液（1×10^5 cfu/ml）0.5 mlを接種し、30℃で30分振盪後、0.1 mlを採取してニュートリントラクトン（2ml）で検定した。37℃で24 hr培養後に菌体の有無を観察し、菌の生育がみられない最小濃度をMBCとした。

2.3.3.2 抗菌試験
抗菌性の評価は繊維製品の抗菌性試験方法 JIS L1902（1998）に準じて行った。定量試験では無加工試料の染着後の生菌数（M），無加工試料およびBET試料の18hr培養後の生菌数（M）および（M）を測定した。それぞれの生菌数を統計的に処理し、感染抑制力L=M-M を求めた。

3. 結果と考察
3.1 抗菌試験に用いる染色繊維試料の調製
3.1.1 背景染量
染料試料の染着量は通常のSOレースの方法で求めた。これより求めた染着量が47.8 mmol/kg-fgは染料試料の標準値となるためである（18）。

3.1.2 塩酸性染料の相対飽和染着量（S）
染料試料の染着量を基準とするSOレースで求めた。これより求めた染着量が47.8 mmol/kg-fgは染料試料の標準値とされている。したがってDは通常のSレースによるものとした。

Dの相対吸着曲線は繊維に分配型が加算されたような吸着挙動を示し、分配吸着に由来する吸着の割合も大きいこと
が特徴的であった。アクリル繊維に対する塩基性染料の着色
は繊維分子中のスルホン酸基（染着反応）の対イオンと染料
カチオンとのカチオン交換反応に基づく吸着であり、その反
応式の平衡係数から塩基性染料の相対吸着力を求めることができ
たことは知られている。参考のために算定した供試染料
gとの相対吸着力Δμ∞ (kcal/mol) を Table 1 に示した。

3.1.3 塩基性染料による染色物の染着量
SOR が 0.1 以下の範囲で染料濃度の低い染色試料を調製
したが、染色試料の染料濃度は 2.2.2.2 の方法で定量し、所定
の SOR で染色された染色物はあらかじめ溶解されていることを
確認した。

3.1.4 塩化ペンゾリコニウム併用染料物の染着量
塩基性染料と染料物 BC を併用し、低 SOR でも抗歯を保持
することを目的として染料の染色試料を調製した。BC の
初濃度 (D0) が 0.1 2.8 mmol/L のときの固化への吸着量 (D1)
を求め Table 2 に示した。D0 = 14 mmol/L 以上では D1 は約
54 mmol/kg であった。2.2%の MG 液液に 0.1 2.8
mmol/L の BC を添加した染色試料について、MG 濃度と
BC 濃度を SOR で示した (Table 3)。MG の染着は BC の
D0 の何倍以上に及ぼし、その影響染着度は試料 7 10 にお
いて低下した。

3.2 抗歯性の評価
3.2.1 最小殺歯濃度 (MBC)
S. aureus および E. coli に対する 6 種の塩基性染料および BC
の MBC を Table 4 に示した。

塩基性染料の MBC は MG, CV および DC で著しく小さく、
トリフェノルメタン染料の殺歯性が高いことを示した。抗
歯性は、S. aureus では MG, MG, CV > SAF > MB > BO 33、
E. coli では MG > CV > BO 33 > SAF > MB の順に小さく
一方、BC の MBC は S. aureus および E. coli でそれぞれ SAF
および MG の MBC と高い。

また、供試染料と BC の MBC はいずれも S. aureus < E. coli
の関係がある。S. aureus に対する E. coli の MBC の差を比較する
と、供試染料では 60 1000 倍で大きく、S. aureus に対し
て抗歯性が著しく高い。しかし、BC では同様に抗歯性の
MBC の差は 16 倍程度であった。このことから、基底の違いが
染細胞の発現に及ぼす影響を塩基性染料に比べて BC で
は小さいと考えられる。

3.2.2 JIS 法による定性試験
塩基性染料による染色物の染着量を定量試験を行った結果
table 5 に示した。S. aureus に対してトリフェノルメタン染
料による染色試料では、MG および CV の SOR = 0.2 を除
く全ての染色試料で死滅阻止試験（パラメータ）が形成され、染料
の染着により細菌の発育が阻害された。しかしそ SAF では SOR
1 で、MB および BO 33 は全ての SOR でパラメータは形成さ
れなかった。この結果は、MB の SOR = 0.2, MG, CV
> SAF > BO 33 > MB に分けられた。一方、E. coli では供試染料でパラ
メータ形成がみられず、浸出した染料濃度は塩酸酸性1000 cmol/L
の E. coli の発育を阻止するのに至る強酸濃度ではなかったと
推察した。

一方、Table 6 に BC を単独で着色させた試料 (No. 2 5)
および MG と BC の併用染色試料 (No. 6 10) の染着量を
の結果を示した。S. aureus に対しては染着 (No. 1) で染色
の状態が形成され、BC 単独でも発育阻止作用を
示し、また、前述のように MG の SOR = 0.2 と染色試料
ではハローが形成されなかったが、BC を併用した染色 No. 9
および No. 10 (Table 3) では SOR = 0.2 でもハローが形成された。
このような BC の併用によって MG 濃度の低下による発育抑制の
低減または失活は充分に観測されるので、染色の染細胞に
おいては抗歯性を伴うことがわかった。しかし、E. coli
に対しては供試染料の場合と同様、いずれの染料においても
ハロー形成は観察されなかった。

3.2.3 JIS 法による定量試験
3.2.3.1 塩基性染料による染料物の抗歯性
塩基性染料による染色物の殺歯活性値および静穏活性値
を測定し SOR との関係について講じた。

Table 1 Relative saturation values ([I]1) and relative
affinity (RA) of six basic dyes on acrylic fiber

<table>
<thead>
<tr>
<th>Dyes</th>
<th>MG</th>
<th>CV</th>
<th>DG</th>
<th>MB</th>
<th>SAF</th>
<th>BO 33</th>
</tr>
</thead>
<tbody>
<tr>
<td>[I]1 (mmol/kg-f)</td>
<td>54.0</td>
<td>47.2</td>
<td>57.2</td>
<td>47.0</td>
<td>50.4</td>
<td>46.1</td>
</tr>
<tr>
<td>RA (kcal/mol)</td>
<td>44.6</td>
<td>48.2</td>
<td>45.0</td>
<td>36.2</td>
<td>40.0</td>
<td>38.2</td>
</tr>
</tbody>
</table>

Table 2 Concentration of Benzalkonium chloride on the
acrylic fiber

<table>
<thead>
<tr>
<th>Sample No.</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
</tr>
</thead>
<tbody>
<tr>
<td>D0 (mmol/L)</td>
<td>0.0</td>
<td>0.3</td>
<td>0.6</td>
<td>1.4</td>
<td>2.8</td>
</tr>
<tr>
<td>D1 (mmol/kg-f)</td>
<td>0.0</td>
<td>28.2</td>
<td>43.2</td>
<td>54.5</td>
<td>54.2</td>
</tr>
</tbody>
</table>

Table 3 SOR of Malachite Green (MG) and Benzalkonium
chloride (BC) on the dyed acrylic fiber

<table>
<thead>
<tr>
<th>Sample No.</th>
<th>6</th>
<th>7</th>
<th>8</th>
<th>9</th>
<th>10</th>
</tr>
</thead>
<tbody>
<tr>
<td>D0 (mmol/L)</td>
<td>0.0</td>
<td>0.3</td>
<td>0.6</td>
<td>1.4</td>
<td>2.8</td>
</tr>
<tr>
<td>SOR (kcal/mol)</td>
<td>MG</td>
<td>1.0</td>
<td>0.55</td>
<td>0.31</td>
<td>0.11</td>
</tr>
<tr>
<td>BC</td>
<td>0.0</td>
<td>0.45</td>
<td>0.69</td>
<td>0.89</td>
<td>0.95</td>
</tr>
</tbody>
</table>

Table 4 Minimum bactericidal concentrations of basic dyes
and Benzalkonium chloride (BC) against Staphylo-
coccus aureus and Escherichia coli.

<table>
<thead>
<tr>
<th>Bacteria</th>
<th>MBC (μmol/ml)</th>
</tr>
</thead>
<tbody>
<tr>
<td>S. aureus</td>
<td>MG</td>
</tr>
<tr>
<td>E. coli</td>
<td>0.39</td>
</tr>
</tbody>
</table>

Table 5 Minimum bactericidal concentrations of basic dyes
and Benzalkonium chloride (BC) against Staphylo-
coccus aureus and Escherichia coli.

<table>
<thead>
<tr>
<th>Bacteria</th>
<th>MBC (μmol/ml)</th>
</tr>
</thead>
<tbody>
<tr>
<td>S. aureus</td>
<td>MG</td>
</tr>
<tr>
<td>E. coli</td>
<td>100</td>
</tr>
</tbody>
</table>

(45)
Table 5
Elution test by JIS testing method for dyed acrylic fibers with six basic dyes against *Staphylococcus aureus* and *Escherichia coli*.

<table>
<thead>
<tr>
<th>S. aureus (Size of inoculum : 1.6 × 10⁶ cells/ml)</th>
<th>E. coli (Size of inoculum : 2.5 × 10⁶ cells/ml)</th>
</tr>
</thead>
<tbody>
<tr>
<td>SOR</td>
<td>MG</td>
</tr>
<tr>
<td>0.2</td>
<td>-a)</td>
</tr>
<tr>
<td>0.5</td>
<td>+b)</td>
</tr>
<tr>
<td>0.7</td>
<td>+</td>
</tr>
<tr>
<td>1.0</td>
<td>+</td>
</tr>
<tr>
<td>1.1</td>
<td>+</td>
</tr>
</tbody>
</table>

a) no halo
b) halo

c) halo

Table 6
Elution test by JIS testing method for dyed acrylic fibers with Malachite Green and Benzalkonium chloride against *Staphylococcus aureus* and *Escherichia coli*.

<table>
<thead>
<tr>
<th>Sample No a)</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>7</th>
<th>8</th>
<th>9</th>
<th>10</th>
</tr>
</thead>
<tbody>
<tr>
<td>S. aureus</td>
<td>-b)</td>
<td>+c)</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
</tr>
<tr>
<td>E. coli</td>
<td>-</td>
</tr>
</tbody>
</table>

a) Sample No were given in Table 2 and 3.
b) no halo
c) halo

Fig 3 (A)のようより*Staphylococcus aureus*に対するMG, CVおよびDGの殺菌活性値は他の染料に比べて高い。殺菌活性値はSOR=1.0ではMG>CV>DGの順に大きく、SOR=1.0でも同様の傾に大きい。また、SOR≥1.0ではいずれの染料も本試験条件における最大値に達した。アンジン系のSAFはSOR<1ではキシジン系のMBと同等で殺菌活性をもたず、SOR=1.0で急激に高い殺菌活性を示した。これはハロー形成がみられたS. aureus団に一致した。一方、アンジン染料BO33はSOR<1ではSOR増加とともに抗菌性は強度から染菌へと緩やかに高まり、SOR=1.1になるとSAFと同様に高い殺菌活性を示した。このように、SOR=1.0の染色試料ではいずれの染料でも顕著な殺菌活性を示したことから、殺菌剤の発現には相対値の染着量を上回る染着量の染料カチオンの染着挙動が関与していると推察した。また、SOR<1.0の染色試料でも流放活性に大きな差異が認められた。この場合は繊維上に存在する染料濃度が相対値の染着量より低く、染料カチオンは繊維中の塩基性基にイオン的に結合されている状態にあり、上記のSOR≥1.0の場合とは繊維上における染着状態は大いに異なると考えられる。そして、SOR<1.0での殺菌活性値の序列MG>CV>DGは、その活性が塩基の違いにより影響を受けるとした

Fig 3 Effect of SOR on dyed acrylic fibers with six basic dyes on bactericidal and bacteriostatic activity: (A) against *Staphylococcus aureus*; (B) against *Escherichia coli*.
Symbol : MG (●), CV (▲), DG (■), MB (○), SAF (△), BO33 (□)

156
SEN'I GAKKAISHI (報文) Vol.57, No.5 (2001)
Fairbrotherらの報告[14]と符合した。

*E. coli*についてもFig 4(B)のようにSOR>1のMGおよびDGでは殺菌活性が認められた。
*Staphylococcus aureus*ではMGとDGのMBCが等しく、*E. coli*ではMG>DGであったように、それらの殺菌活性は*Staphylococcus aureus*では等しく、*E. coli*ではMG>DGであった。また、他の4種の検定菌でもMGが増大しても殺菌活性値は0以下で、殺菌活性をも認められなかった。しかし、殺菌活性値による評価ではBO 33を除いて抗菌活性を示した。静置培養ではSORが増加しても一定で、CV>MB>SAF>BO3の関係が観察された。
以上のように塩基性染料による染色は明らかに抗菌活性をもつ、殺菌活性もしくは静置活性が認められた。また、抗菌活性の測定とその評価において見られた染料の予め染色は*E. coli*において*Staphylococcus aureus*よりも大きかった。

3.2.3.3 塩基性染料の染色状態と抗菌性の関係

*Staphylococcus aureus*における殺菌活性を示すMG濃度はSOR≥0.5であることをすでに述べた。しかし、0.14 mmol/L/1.28 mmol/LのBCを併用して染色した場合、MGのSORは0.11、0.05のように低下する（Table 3）。殺菌活性値はFig 4のように最大値を示し、殺菌活性値を比較すると、併用染料(■)ではMGのみで染色した試料(▲)の10000倍に達し、抗菌性は顕著に向上した。また、BCを単独で吸着した試料(△)と併用染料の殺菌活性値は、いずれのSORでも高い値である。このことから、染色の染料における殺菌活性の増大はBCの殺菌性の寄与によるものと考えられる。

*E. coli*においてケルタグ活性を示すMG濃度はSOR≥1.0であることをすでに明らかにした。しかし、BCを併用した試料(▲)ではMGのSORが0.2まで低下しても殺菌活性を示し、抗菌性は大きく改善できなかった。また、BCを単独で吸着させた試料(△)と比較すると併用染料では殺菌活性値も増大した。BCの単独濃度1.4 mmol/Lで併用した場合、SORはMGが0.1、BCが0.9となり（Sample No 9）殺菌活性値は最大を示した。このように、BCはMGのSOKが等しくある場合の抗菌性は*Staphylococcus aureus*と異なり、BC単独よりもMGとの併用において高かっただった。この現象から、BCの併用による*E. coli*に対する殺菌活性の内応力はBCとMGとの相乗的効果によるものと考えられ、BCの併用は*Staphylococcus aureus*よりも*E. coli*に対して有効であることが明らかであった。

3.2.3.3 塩基性染料の染色状態と抗菌性の関係

JB氏による染菌試験の結果、トリフェルカルボキシル系染料の抗菌活性はアンジン系、チアザニン系、アソジ系と比較して非常によくなったり明らかであった。また、基幹構造と同じで置換基の異なるDG、MGおよびCVの間で抗菌活性には明らかに差異があった。さらに、抗生物は同等抽出と染着力を上回る(SOR≥1.0)の場合に顕著に高く、SOR<1.0の場合には染料間で大きな差異があることがわかった。

SOR<1.0の場合は、染料分子が基幹構造中の酸性基にイオン的に結合しているため、線着性の染料分子の移動しやすさは相対親水性に関係すると考えられる。供試染料の相対親水性はCV>DG>MG>SAF>BO3の順に小さいので（Table 1）、殺菌は逆に容易であると考えられる。抗菌作用が結合していない染料分子において得られる抗生物の移動を阻害され、殺菌には容易な染料分子の染着性が高くなる。しかし、SOR<1.0での染色試料の染菌活性値は染着し易さの序列とは対応しないことがわかった。たとえば、相対親水性の大きなトリフェルカルボキシル系染料CV、DG、MGの抗菌活性値は染着に大きく、低SORでも抗菌活性が高いことは非対の易さ、殺菌活性にによって説明することができない。このことから塩基性染料はイオン性結合した状態を共役構造を介して電荷を分散させ、イオン結合による染料と菌の吸着を促進することができるのではないかと推測した。また、電荷の分布に染料の基幹構造が関与し、染料構造に固有の染着性を発揮する考えられる。このため、染色した染料の基幹構造に固定化された抗生物として作用すると考えることができ、染料色素の抗菌活性はMBC（Table 4）の大きさで比較できる。染料の化学構造と抗菌性の関係について、トリフェルカルボキシル系染料では抗生物を中心にとする3つのフェルカルボキシル基の存在が安定の共役構造を提供し、基幹としてのアミノ基とともに塩基性染料として有効な基体をなしと考えられる。また、供試染料のDG、MGおよびCVの抗生物活性についてはアミノ基の酸性度の違いを反映すると考えられる。すなわち、ジェンニアミノ基が3つのフェルカルボキシル基に置換されたMGとすべてのフェルカルボキシル基に置換されたCVを比較すると、抗生物活性に関与するカチオンをもつアミノ基における電荷の偏りはCV>MGとなる。このためCVの抗生物活性が高いと考えられる。さらに、アミノ基の酸性度は塩基性の低下により十分でないと考えられる。SOFで電子吸引性の塩基がアミノ基に付加されているため、
4. 結論

本研究では6種の塩基性染料とその染色物を用いた塩基性染料の抗菌性について、S. aureusおよびE. coliを供試菌として検討した。染料量を変えて殺菌量に対する殺菌濃度（SOR）を表し、抵抗性に対する染色量および染料の化学構造の影響について検討を行い、次のよう結果を得た。

1) 塩基性染料および極性ベンゼンキノンムは耐菌性の抗菌活性を示した。

2) 最小殺菌濃度はすべての供試染料およびBCについてS. aureus＜E. coliの関係を示し、トリフェニルメタン系染料の殺菌活性が高かった。

3) S. aureusに対する殺菌活性はMBを除きSORの増加にともない高くなった。殺菌活性の順列はDG＞CV＞MG＞BO33＞SAF＞MBであった。

4) E. coliに対してMBおよびDGはSOR1で高い抵抗活性を示したが、他の染料ではSORが増加しても一定の抵抗活性を示した。殺菌活性の順列はDG＞MG＞CV＞MB＞SAF＞BO33であった。

5) 塩基性染料の抗菌活性はSOR1.0＞SOR＜1.0での染着状態の違いを反映した。

6) 染色された織物における抗菌活性を示すMG濃度はMGを単独で用いるよりもBCと併用に低下し、抗菌性を有する染料の染色物を得ることができた。また、BC併用による抗菌性的増大はS. aureusよりもE. coliに対して顕著に認められた。

謝辞

著者の皆様のご協力に深く感謝いたします。なお、本研究の一部は、文部省科学研究費補助金の援助を受けて行ったものであり、著者に感謝いたします。

文献

4. Jpn. Kokai Tokkyo Koho, H2-68310
5. Jpn. Kokai Tokkyo Koho, H7-11579
8. Jpn. Kokai Tokkyo Koho, H2-307931
13. Jpn. Tokkyo Koho, S49-30102
19. O.Grenz and W.Beckman, Melanin Textilier, 38, 296, 783(1957)