高密度ALCパネルの性状に関する実験的研究
その1 ALCの密度と諸性物の関係

○水谷吉克※1
松沢晃一※2
中川清之※1
橋高義典※2

1. はじめに
高温高圧蒸気養生された軽量気泡コンクリート（以下、ALCという）は、セメント、珪石、生石灰を主原料として、建築物の外壁、間仕切壁、屋根および床など、多くの部位にパネルとして使用されてきた。

ALCパネルの製造技術は、1960年代に北欧から日本に導入された。建材としての技術基準を当時の建設省から幾度かにわたり通達され1)、その後、昭和42年に「ALC構造設計基準・同解説」が建築基準法第38条の規定に基づく建設大臣の認定を受けた。当時は比重により、第1種、第2種と区分されていなかったが、その後、日本におけるALCの生産が、総乾引き比重0.5程度の第1種がまずとり、昭和58年の「ALC構造設計基準・同解説」の再認定において、比重の区分がなくなっていている。また、日本工業規格JIS A 5416-2007（軽量気泡コンクリートパネル（ALCパネル））では、1972年（昭和47年）の制定当初より比重の区分はなく、現在2)に至っている。

近年、建築物の高寿命化、高性能化が求められるようになり、建材材料に求められる性能も多岐にわたっている。ALCパネルについても、高耐久性、高耐化、高強度化などが求められ、密度を高め、物性がJIS A 5416の規定と異なる軽量気泡コンクリートの検討が行われてきた。

ALCの高密度化に関しては、ALCの劣化要因の一つである凍結融解性に注目し、その対策の一つとして高密度化に関する研究が行なわれている3)4)。しかし、当該研究報告は、ALCパネルの建築部材としての高強度、高性能化を目指したものではなかった。

そこで本研究では、部材設計を行うためのデータベースとするために、密度とALCの基本物性の関係を検討するとともに、その知見に基づいて製品ラインにて製作された高密度ALCパネルの強度性状について確認したので報告する。なお、ALCの密度変化は、現在の量産型の生産システムにて、主原料をそのままに、気泡材などの調合により製造可能な範囲である450〜750kg/m³程度を対象とした。

試験は、圧縮強度、曲げ強度、引張強度、せん断強度、弾性係数、長さ変化、断熱性について行った。

2. 供試体
試験に供するALCは、木製型枠を用いて、現在のALCの主原料である珪酸質材料（珪石）、生石灰、セメントを用い、発泡材であるアルミニウム粉未ならびに蒸気材料を調整した混合スラリーを打設し、発泡後に脱型、そして、高温高圧蒸気養生（温度180℃、ゲージ圧1MPa）したALC塊（おおよそ300mm角）とした。供試体は、製造したALC塊のほぼ中央部より切り出したものとした。

試験に供するALC塊は試験項目毎に打設し、密度もJIS A 5416-2007(ALCパネル)9.2ALCの圧縮強度および密度試験の規定に従い行なった。

3. 各試験
3.1 圧縮強度
3.1.1 試験方法
圧縮強度は、JIS A 5416-2007(ALCパネル)9.2ALCの圧縮強度および密度試験の規定に従い行なった。
3.1.2 試験結果
密度と圧縮強度および比圧縮強度の関係を図1に示す。圧縮強度は、密度が489kg/m³で4.44N/mm²、密度が714kg/m³で9.29N/mm²であり、密度が高くなると、圧縮強度も一次曲線的に大きくなり、その相関関係も極めて高い。また、比強度も、密度が高くなる程に大きくなる傾向を示しており、密度500〜700kg/m³程度の範囲においては、密度を高くする割合以上に強度が高くなる。

An experimental study on properties of increased density ALC panel
Part1 Effect of density on fundamental properties of ALC

MIZUTANI Yoshikatsu※1, MATSUZAWA Koichi※2, NAKAGATA Kiyoyuki※1, KITSUTAKA Yoshinori※2
3.2 圧縮弾性係数
3.2.1 試験方法
圧縮弾性係数は、長辺が発泡方向となるように 100×100×200mm に切り出したブロックを用いて行なった。試験は、JIS A 5416-2000（ALC パネル）9.2 ALC の圧縮強度および密度試験に準じ長辺方向に載荷し、ひずみ度は供試体の側面中央部に貼り付けた検長 30mm のひずみゲージにより測定した。弾性係数は、供試体の応力-ひずみ曲線において、最大荷重の 1/3 に相当する応力と、供試体のひずみ度 50×10^{-6} の時の応力を結ぶ線分の勾配とした。なお、ひずみ度は供試体の相対する 2 面のひずみ度の平均値とした。なお、供試体の含水率は圧縮試験と同様に調整した。

3.2.2 試験結果
密度と圧縮弾性係数および比弾性係数の関係を図 2 に示す。圧縮弾性係数は、密度が 508kg/m^3 で 1.82×10^{-3}N/mm^2、密度が 694kg/m^3 で 3.34×10^{-4}N/mm^2 であり、密度が高くなると弾性係数も一次比例的に高くなる傾向を示す。

3.3 曲げ強度
3.3.1 試験方法
曲げ強度は、ALC 塊より、40×40×160mm に長辺が発泡方向となるように切り出し、圧縮強度と同様に含水調整を行った ALC ブロックを用いて行なった。試験は、JIS R 5201-1997（セメントの物理試験方法）10.強さ試験の規定に準じ実施した。
3.3.2 試験結果
密度と曲げ強度および比曲げ強度の関係を図 3 に示す。曲げ強度は、密度が 501kg/m^3 で 1.19N/mm^2、密度が 736kg/m^3 で 2.79N/mm^2 であり、圧縮強度同様に、密度が高くなると曲げ強度も一次比例的に大きくなっている。また、比曲げ強度も密度が高くなると大きくなり、密度の増加割合よりも曲げ強度の増加割合の方が高くなった。

3.4 引張強度および引張弾性係数
3.4.1 試験方法
引張強度および引張弾性係数は、ALC 塊より長辺が発泡方向となるように 100×100×200mm に切り出したブロックを用いて行なった。試験は図 4 に示すように、鋼製造具 (9×100×100(mm)) をエポキシ系接着剤で供試体小口に固定し、長辺方向に毎秒 0.1〜0.2N/mm^2 の速さで、両端をピン支持とした一輪引張となるように供試体が破断するまで荷重を加えて行った。ひずみ度は供試体の相対する側面の両側に貼り付けた検長 30mm のひずみゲージにより測定し、2 点のひずみ度の平均値を供試体のひずみ度とした。弾性係数は、供試体の応力-ひずみ曲線において、最大荷重の 1/3 に相当する応力と、供試体のひずみ度 50×10^{-6} の時の応力を結ぶ線分の勾配とした。図 4 引張試験の概要
3.4.2 試験結果
密度と引張強度および比引張強度の関係を図5に示す。引張強度は、密度が489kg/m³で0.75N/mm²、密度が725kg/m³で1.26N/mm²であり、密度が高くなると引張強度も一時比例的に大きくなった。また、比引張強度は、密度500〜700kg/m³の範囲においては、1.48〜1.93N/mm²であり、密度との相関関係は特になく、引張強度は密度の増加割合に応じて強くなるといえる。

図5 密度と引張強度との関係

密度と引張弾性係数との関係を図6に示す。引張弾性係数は、密度が489kg/m³で1886N/mm²、密度が725kg/m³で3357N/mm²であり、密度が高くなると引張弾性係数も一次比例的に大きくなった。また、比弾性係数も密度が高くなると大きくなる傾向を示した。

図6 密度と引張弾性係数との関係

3.5 せん断強度
3.5.1 試験方法
せん断強度試験は、100mm厚さのブロックを図8に示す形状に切り出したものとし、試験は、ALCの発泡方向に対して垂直方向に加力した。なお、せん断強度は下式により算出した。

せん断強度 (N/mm²) =P/[(t×a1)+(t×a2)]
ここで、P: 荷重(N)
 t: 供試体厚さ(100mm)
a1, a2 (mm)

図7 密度と最大引張りひずみ度の関係

3.5.2 試験結果
破壊状況を写真1に、密度とせん断強度および比せん断強度の関係を図9に示す。せん断強度は、密度490kg/m³で1.43N/mm²、密度713kg/m³で2.66N/mm²であり、密度が高くなると、一次比例的にせん断強度も大きくなり、その相関は高い。

図8 せん断強度試験

3.6 乾燥収縮率
3.6.1 試験方法
供試体は、ALC塊より長辺が発泡方向となるように40×40×160mmに切り出したブロックとし、試験は、JIS A 5416:2007(ALCパネル9.3ALCの乾燥収縮率試験に準じて実施した。

図9 せん断強度と密度、最大引張りひずみ度との関係

3.6.2 試験結果
密度と乾燥収縮率の関係を図10に示す。
乾燥収縮率は、全ての供試体において 0.014 ～0.022%の範囲であり、密度と乾燥収縮率に
関係性は確認されなかった。
JIS の規定では、ALC の乾燥収縮率は
0.05%以下と規定されているが、本試験にお
ける供試体は本規定を大幅に下回っており、
密度 500～750kg/m³ 程度までの ALC の乾燥収
縮率については、JIS に規定される ALC と同
等の性能であると判断される。
3.7 断熱性試験
3.7.1 試験方法
断熱性試験は、ALC 塊より、長辺が発泡方
向となるように 20×200×200mm に切り出し
たブロックとした。試験は、JIS A 1412-21999
（熱絶縁材の熱抵抗及び熱伝導率の測定方法
－第 2 部：熱流計法（HFM 法））に準じた。
なお、供試体の含水率は 2～5%に調整した。
3.7.2 試験結果
密度と熱伝導率との関係を図 11 に示す。
ALC の熱伝導率は、密度 502kg/m³ で
0.118W/mK、密度 732kg/m³ で 0.176W/mK
であり、密度が高くなると熱伝導率も大きくな
り、断熱性能が低くなる。密度が大きくなる
と内部の気泡が減少するため熱伝導率が大
きくなると考えられる。
4. まとめ
本研究の結果、密度 450～750kg/m³ の範囲
の ALC の諸性質について、以下のことが確認
された。
1) 密度が高くなると圧縮強度、曲げ強度、
引張強度、せん断強度が高くなるともとに、
弾性係数（圧縮、引張）も高くなり、
強度と密度の間には高い相関関係がある。
2) 圧縮強度と曲げ強度については密度が高
くなると比強度が高くなり、密度を高く
する割合以上に強度が高くなる傾向があ
るが、引張強度については増加割合に応
じた強度を示す。
3) 乾燥収縮率は、密度に関係なくおおよそ
一定で、JIS A 54162007 ALC パネルの規定
値の範囲内にある。
4) 断熱性能は、密度が高くなると低下する
傾向を示すが、密度 750kg/m³ までのもの
であれば、JIS A 54162007 ALC パネルの規
定値の範囲内にある。
[参考文献]
1) 2009 年度版 ALC パネルを用いた建築物の構造関係
技術基準解説書編集委員会：2009 年度版 ALC パネ
ルを用いた建築物の構造関係技術基準解説書、
pp43～56、2009
2) 日本規格協会：JIS A 54162007 軽量気泡コンクリー
トパネル、2007
3) 田畑雅幸 他：比重を高めた ALC の耐震性、日本
建築学会大会学術講演乾燥集（九州）、pp845～846、
1989、104

※1 クリオン株式会社
※2 首都大学東京

Clion Co., Ltd.
Tokyo Metropolitan University