要約：パーキンソン病の治療にはドパミンの前駆物質であるL-ドパ（L-dopa）ならびにドパミン受容体刺激薬が用いられているが、薬効の減弱および副作用の発現等の問題が残されている。新薬の変角アルカロイド誘導体カベルゴリンのパーキンソン病症状に対する改善作用の特徴を、パルピリドおよびブロモクリプチンと比較検討した。カベルゴリンはドパミンD_{2}受容体に対してペルゴリンと同等の高い親和性を示し、またドパミンD_{3}受容体に対する結合性はペルゴリンよりも低いものの刺激作用を示すことが確認された。カナティオペルパーキンソン症候型（MPTP）誘発パーキンソン病モデルにおいて、カベルゴリンはパーキンソン病症状改善効果を示し、その効果はペルゴリンおよびブロモクリプチンより長時間持続した。また、この時ペルゴリンとブロモクリプチンは興奮行動およびジスキネジアを発現させたのに対し、カベルゴリンはパーキンソン病症状改善効果を示す用量において、それらの異常行動は発現しなかった。カベルゴリンとL-ドパの併用実験において、相加的なパーキンソン病症状改善効果が認められた。そして、併用することによってL-ドパ単独投与で得られた改善効果と同等の効果を示したにもかかわらず、L-ドパ单投とL-ドパの変性行動発現は認められなかった。耐薬性について、カベルゴリンは長期連続投与してもパーキンソン病症状改善効果の減弱は認められなかった。以上のことから、カベルゴリンは持続的なパーキンソン病症状改善作用を持つ、副作用発現ならびに耐薬性も低いことが示唆された。またL-ドパとの併用において、カベルゴリンはL-ドパの投与量を減量できる可能性が示された。事実、臨床試験においても、カベルゴリンは1日1回の投与において、ブロモクリプチン（1日3回）と同等のパーキンソン病の主要症状の改善効果が認められた。L-ドパとの併用においてもL-ドパの投与量を低下させられ、wearing-off現象及びon-off現象の発現を低減することが認められた。これらのことから、カベルゴリンは有用なパーキンソン病治療薬となりうるものと考えられる。

1. はじめに

パーキンソン病は、筋固縮、無動、随意運動の緩慢化、律動性振戦などの症状を主症状とする疾患であり、ドパミンを神経伝達物質とする中脳黒質神経細胞の原因不明の変性・脱落を主な病変とする。本疾患の治療には、ドパミンの前駆物質であるL-ドパ（L-dopa）、ならびにブロモクリプチン、ペルゴリン等のドパミン受容体刺激薬などが用いられている。L-ドパはパーキンソン病症状の主症状として位置づけられているが、短期投与による薬効の減弱（wearing-off現象、on-off現象）、投与量増加に伴う不随意運動（ジスキネジア）、ならびに幻覚、妄想などの中枢性副作用が出現する（1-3）。またL-ドパからドパミンへ

キーワード：パーキンソン病、カベルゴリン、L-ドパ、ドパミンD_{2}受容体

Fig. 1 Chemical structure of cabergoline
の代謝過程で細胞毒性をもつフリーラジカルが生じること
が知られている(4). 一方ドバミン受容体刺激薬は、L-ド
パと併用することによってL-ドパの減量ならびに使用開
始時期の遅延を可能にすることから、L-ドパによる副作用
の軽減ならびに病態の進展抑制が期待される(5-8). カペ
ルゴリン(図1)は選択的なドバミンD₂受容体刺激作用
を有する新規の麦角アルカロイド誘導体であり、パーキン
ソノ病治療薬として1999年8月に発売された. 本稿では
カペルゴリンの薬理学的特徴、パーキンソン病動物モデル
における作用、ならびに臨床試験成績について概要を述べ
る。
2. 発見の経緯
1967年プロモクリプチンが選択的ドバミン受容体刺激薬
として発売されて以降、ファルマシア社はプロモクリプ
チンより強い効果を示し、かつ安全な新規麦角アルカロイ
ド誘導体の探索研究を行った。その結果1980年にカペル
ゴリンを発売、既にヨーロッパにおいては、1日1回
投与で臨床効果、忍容性ともに良好なパーキンソン病治療
薬として使用されている(9).
3. 作用機序と薬理作用
(1) ドバミン受容体結合力
中枢のドバミン受容体に高い親和性で結合するカペル
ゴリン(10)の、ドバミンD₂ならびにD₃受容体に対する
親和性を検討した(11). カペルゴリンはバルゴリッドと同等
のドバミンD₂受容体親和性を示し、プロモクリプチンよ
り約7倍強かった. 一方、ドバミンD₃受容体に対する親
和性は、3剤ともドバミンD₂受容体に対するそれより弱
かったものの、バルゴリッドがもっとも弱かった(表1).
カペルゴリンおよびバルゴリッドのドバミンD₂受容体に対
する親和性はGTP存在下で低下した。ドバミン受容体の
ようなGタンパク結合性受容体は,GTPの存在下で刺激薬
の親和性が低下するため(12)カペルゴリンおよびバルゴ
リッドはドバミンD₂受容体刺激作用を有すると推測された.
一方、プロモクリプチンはGTPの存在、非存在に関わら
ず親和性が変化しなかったことから、ドバミンD₂受容体
に対しては拮抗作用を示すものと考えられた(表1).
(2) 病態動物モデルにおける作用
ヒトのパーキンソン病と類似の症状を発現するサルの1-
methyl-4-phenyl-1,2,3,6-tetrahydropyridine(MPTP)
誘発パーキンソン病モデル(13)を用い、パーキンソン症
状改善作用ならびに興奮行動の発現をスコア化して
(14)検討した(15). パーキンソン症状改善作用におい
ては、カペルゴリンは作用発現時間が遅いものの改善効果
ならびに作用持続時間は優れていた。バルゴリッドは作用発
現時間ならびに改善効果は劣っていたが作用持続時間は短
かった。また、プロモクリプチンは作用持続性を示すも
のの改善効果は他剤に比して弱いものであった(図2).
興奮行動の発現においては、カペルゴリンはパーキン
ソン症状改善効果を示す用量において興奮行動は誘発しなか
った。バルゴリッドおよびプロモクリプチンは、パーキン
ソン症状改善効果を示すと共に興奮行動を誘発した(図3).
一方、カペルゴリンは、マウスならびにラットを用いたレ
セルビン処置によるアキネシア、カタルクシーならびに筋
固縮(16-18)に対しても持続性のある改善作用を示した
(19).
以上の結果から、カペルゴリンは持続的なパーキンソン
症状改善効果を持ち、かつ、異常行動発現は他のドバミ
ンD₂受容体刺激薬より少ないと考えられた。
(3) 遺伝投与による影響
受容体刺激薬の遺伝投与は、薬効性の発現が危険され
カベルゴリンのパーキンソン様症状改善作用

Fig. 2 Behavioral effects of cabergoline, pergolide and bromocriptine on MPTP-lesioned parkinsonian monkeys. Anti-parkinsonian effects shown by percentages of amelioration and their mean values from 5 monkeys are plotted. * and **: Significantly different from the mean values 1 h before the injection of each drug at P<0.05 and P<0.01, respectively.
Fig. 3 Comparison of the extent of drug-induced hyperactivity for dopamine D2-receptor agonists in MPTP-lesioned parkinsonian monkeys. Anti-parkinsonism and hyperactivity are shown as the maximum percentage of amelioration and the maximum score, respectively. * and **: Significantly different from the mean values 1 h before the injection of each drug at $P<0.05$ and $P<0.01$, respectively. N.D.: Not detected.

Fig. 4 Effect of chronic administration of cabergoline on akinesia scores of common marmosets. Three weeks after the last daily administration (on day 43), animals received an acute treatment of cabergoline. #: Significantly different from normal control animals (day 0) at $P<0.05$, *: Significantly different from MPTP-treated animals (day 0) at $P<0.05$.

Cabergoline (0.2 mg/kg/day, s.c.)

MPTP-treated animals

Normal control animals

Days
Table 2 Behavioral effect of combination therapy with L-Dopa and cabergoline in MPTP-treated parkinsonian monkeys

<table>
<thead>
<tr>
<th>Drugs</th>
<th>Dose (mg kg, s.c.)</th>
<th>Antiparkinsonian effect (maximum % of amelioration)</th>
<th>Hyperactivity (peak score)</th>
<th>Dyskinesia (peak score)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cabergoline</td>
<td>0.025</td>
<td>29.8*</td>
<td>N.D.</td>
<td>N.D.</td>
</tr>
<tr>
<td></td>
<td>0.05</td>
<td>64.5</td>
<td>N.D.</td>
<td>N.D.</td>
</tr>
<tr>
<td></td>
<td>0.1</td>
<td>83.8</td>
<td>N.D.</td>
<td>N.D.</td>
</tr>
<tr>
<td></td>
<td>0.2</td>
<td>89</td>
<td>N.D.</td>
<td>N.D.</td>
</tr>
<tr>
<td>L-Dopa</td>
<td>10</td>
<td>50.4*</td>
<td>N.D.</td>
<td>N.D.</td>
</tr>
<tr>
<td></td>
<td>20</td>
<td>73.9*</td>
<td>1.0</td>
<td>0.9</td>
</tr>
<tr>
<td></td>
<td>40</td>
<td>75.5*</td>
<td>2.4</td>
<td>1.4</td>
</tr>
<tr>
<td>Cabergoline</td>
<td>0.038</td>
<td>56.9*</td>
<td>N.D.</td>
<td>N.D.</td>
</tr>
<tr>
<td>L-Dopa and</td>
<td>10 and 0.038</td>
<td>94</td>
<td>N.D.</td>
<td>N.D.</td>
</tr>
</tbody>
</table>

Maximum % amelioration = (pre score - peak score) pre score × 100. N.D. indicates Not Detected. *: Significantly different from the mean value of combination with L-dopa and cabergoline at P<0.01.

ゴリン治療群 431 mg H (n = 211), L-Dopa治療群 738 mg H (n = 208) であり、カルペロンの早期治療によりL-

Dopa投与量を低く抑えることが可能であった。また、5年間で少なくとも1つ以上のwearing-off現象およびon-off現象の発現はL-Dopa単独治療群 33.7% であったのに対

し、カルペロン治療群 22.3%，この内カルペロン単独群（n = 76）では3.3%と低率で、カルペロン単独投

与群の有用性が確認された。

進行期患者への効果：L-Dopa併用症例 235例を対象とした

プロモクリプチンとの二重盲検比較試験の結果、中等度改

善以上の改善率はカルペロン群47.3%，プロモクリプ

チン群 35.0% で同等性が確認された。

長期投与の結果：本邦で実施されたパーキンソン病患者

166例による3年間の長期投与試験の結果、中等度改善以

上の改善率はL-Dopa非併用例で54.3%，L-Dopa併用例で

12.0%であった。また、L-Dopa併用例ではwearing-off現

象と各種日常生活動作の改善が認められた。

5. おわりに

カルペロンはイギリス、スイス、デンマークおよびフ

ィンランドをはじめとする11カ国において1996年からパ

ーキンソン病治療薬として既に承認されている。本邦では

1999年8月に発売され、1日1回の服用で効果が安定する

ように投与回数を変えることが多かった。L-Dopa併用療法におけるL-Dopaの効用量を可能にし、また長期投与においてもwearing-off現象やon-off現象が少ないことから、パーキンソン病

の治療に大きく貢献できるものと期待される。

謝辞：本論文の執筆の機会を与えていただきました本誌

（前）企画・編集主任の名古屋大学大学院医学研究科医学

薬学・附属病院薬剤部、鍋島俊隆教授に深謝いたします。

文献

10) Benedetti MS, Dostier P, Barone D, Efthymiopoulos C, Peretti G and Roncucci R: In vivo interaction of cabergoline with rat brain

The pharmacological effects of cabergoline, a novel ergot alkaloid, against parkinsonism were assessed by comparing its effects with those of bromocriptine and pergolide. The affinities of cabergoline and pergolide for the D_2 receptor were about the same, about 7 times stronger than that of bromocriptine. The affinity of each compound for the D_1 receptor was markedly lower than its affinity for the D_2 receptor. However, other data suggest that cabergoline and pergolide would have D_1-receptor agonist activity, whereas bromocriptine would act as a D_2-receptor antagonist. In MPTP-lesioned parkinsonian monkeys, cabergoline improved motor disability, and its effect lasted longer than those of bromocriptine and pergolide. Moreover, cabergoline induced no behavioral abnormalities even though at the highest dose used, in contrast to bromocriptine and pergolide, both of which induced hyperactivity. This beneficial effect of cabergoline did not attenuate on prolonged administration. Combined treatment with a low dose of L-dopa and a low dose of cabergoline improved motor disability without inducing the hyperactivity and dyskinesia seen during treatment with L-dopa alone at high doses. From these results, we suggest that cabergoline promises to be a useful anti-parkinsonian agent with a long lasting effect that survives prolonged administration and without the side effects induced by L-dopa.

Keywords: Parkinson’s disease; cabergoline; L-dopa; D_2-receptor