ベンゾジアゼピン系抗不安薬のマウスにおける抗不安作用、
協調運動障害作用ならびに健忘惹起作用に及ぼすフルボキサミンの影響

今西泰一郎，小野沢要，林晶子，馬場淳

明治製薬（株）薬品総合研究所（2001年9月3日）

要約：選択的セロトニン再取り込み阻害薬のフルボキサミンが臨床で用いられる場合、他の抗精神薬と併用されることが多い。そこで今回、ベンゾジアゼピン系抗不安薬の主作用ならびに副作用に対するフルボキサミンの影響についてマウスを用いて検討した。抗不安作用の評価には消夜箱試験を用い、協調運動障害ならびに健忘惹起の副作用の指標としてそれぞれ回転棒試験と受動回避試験を行った。ベンゾジアゼピン系抗不安薬には代表的なジアゼパムとともにロフラゼプ酸エチルとその活性代謝物のCM7116を用いた。その結果、ジアゼパム、ロフラゼプ酸エチルならびにCM7116の抗不安作用はフルボキサミン10 mg/kgの腹腔内投与により増強されたが、フルボキサミンの45 mg/kgではロフラゼプ酸エチルの作用のみが増強され、ジアゼパム、CM7116では明らかに増強は認められなかった。一方、ジアゼパム、ロフラゼプ酸エチルならびにCM7116の協調運動障害作用と健忘惹起作用はフルボキサミンの10 mg/kgにより影響されなかった。フルボキサミンを45 mg/kgに增量することによりジアゼパムの副作用のみが増強あるいは増強される傾向が観察されたが、ロフラゼプ酸エチルならびにCM7116の副作用は影響されなかった。なお、いずれの試験においてもフルボキサミンは単独作用を示さなかった。以上の成績より、フルボキサミンは低用量でベンゾジアゼピン系抗不安薬の主作用を増強するが、高用量では併用する抗不安薬によってはその副作用も増強することが示唆された。従って両者を併用する際には、お互いの用量を減じても十分な抗不安作用が期待できる可能性を踏まえて、副作用を回避するための慎重な用量設定が必要であると考えられる。

総合薬理

選択的セロトニン再取り込み阻害薬（selective serotonin reuptake inhibitor, SSRI）であるフルボキサミン（fluvoxamine）がかつておよびうつ状態あるいは強迫性障害の治療に用いられる場合、他の抗精神薬と併用されることが多い。したがって、フルボキサミンと他の抗精神薬の相互作用を検討することにより、フルボキサミンを適切に使用する上で有用な情報が得られると考えられる。すでに薬物動態学的な相互作用に関する検討により、フルボキサミンを含む一部のSSRIが薬物代謝酵素cytochrome P450（CYP）に対する阻害作用を有するため（1）、これら酵素によって代謝される薬物を併用する際には注意を要するとされている。例えば健常人ボランティアにおける検討では、フルボキサミンによってベンゾジアゼピン系抗不安薬であるジアゼパム（diazepam）の血中濃度が上昇し、半減期も延長することが観察されており（2）、両薬の併用に注意が呼びかけられている。

一方薬理学的な相互作用に関しては、強制水泳法や恐怖条件付けモデルによりSSRIの抗うつ・抗不安作用がベンゾジアゼピン系抗不安薬により減弱することを報告されている（3,4）。逆に著者らは、マウスのガラス王冠試験における運動試験において、ジアゼパムやロフラゼプ酸エチル（ethylvloflazepate）の抗不安作用をフルボキサミンが増強することを報告している（5）。そこで今回、これらのベンゾジアゼピン系抗不安薬の作用に及ぼすフルボキサミンの影響についてさらに詳細に検討する目的で、主作用である抗不安作用のみならず協調運動障害作用ならびに健忘惹起作用などの副作用も含めた検討をマウスを用いて行った。抗不安作用、協調運動障害作用ならびに健忘惹起作用の指標として、それぞれ消夜箱試験、回転棒試験ならびに受動回避試験を用いた。ロフラゼプ酸エチルはプロドラッグ的な特性を有し、その効果は主に活性代謝物であるCM7116によるものとされている（6,7）。CM7116のベンゾジアゼピン受容

キーワード：フルボキサミン、ジアゼパム、
ロフラゼプ酸エチル、薬物相互作用、マウス
体との結合親和性はロフラゼプ酸エチルよりも強力であり
(8)，抗不安作用，抗震振作用，筋弛緩作用ならびに協調
運動障害作用など，ベンゾジアゼピン系薬物に共通する効
果を有することも報告されている(6,7)。そこでジアゼパ
ム，ロフラゼプ酸エチルに加えてCM7116についても同
様の評価を行った。

実 験 方 法

1. 使用動物

4週齢のddY系雄性マウスを日本SLC（静岡）から購
入し，室温21℃，湿度50%～70%，照度時間を7：00
〜19：00に設定した飼育室内で1週間以上予備飼育した
後，実験に用いた。予備飼育期間ならびに試験時を通じて
水道水，囲形飼料（NMF，オリエンタル酵母，東京）の
自由摂取とした。なお飼育や実験操作などのすべては，日
本薬理学会指針ならびに明治製薬（株）薬品総合研究所「動
物実験管理に関する指針」に従って実施した。

2. 使用薬物

ジアゼパム（和光純薬，大阪），ロフラゼプ酸エチル
（ethyl 7-chloro-2,3-dihydro -5-(2-fluorophenyl)-2-oxo-1
H-1,4-benzodiazepine-3-carboxylate，明治製薬）ならび
にCM7116（7-chloro-2,3-dihydro-5-(2-fluorophenyl)-2-
oxo-1H-1,4-benzodiazepine，明治製薬）は，いずれも0.5%
carboxymethylcellulose-Na（CMC）溶液に懸濁した。マ
レン酸フルボキサミン（明治製薬，以下フルボキサミン
と表記）は生理的食塩水に溶解した。いずれの薬物も，投
与容量が10 ml/kgになるように投与日当日に調製して脳
腔内に投与した。溶媒を投与する群については，投与薬物の
溶媒に対応して生理的食塩水または0.5%CMC溶液を投
与した。

3. 明暗箱を用いた抗不安作用の評価

試験には，雄性30cm，高さ9cmで幅は床面4cm，天
井面9cmであり，ギロチンアを備えた直径3cmのマ
ウス通過口によって暗室と明室に区切られた明暗箱を用い
た。ジアゼパム，ロフラゼプ酸エチルあるいはCM7116
とフルボキサミンをマウスに同時投与し，その30分後に
マウスを暗室に入れた。60分後にギロチンアを開放し，
マウスが暗室から明室に移動するまでの時間（移動潜時）
を大さ60秒まで記録した。通常抗不安作用を検討するた
めの明暗箱試験では移動潜時のみならず暗室における滞在
時間や両室間の移動回数が不安の指標とされるが，これら
の測定値は相互に高い相関性を示すことが報告されている
ため(9)，今回は移動潜時のみを測定した。なお，マウス
が60秒以上明室に移動しなかった場合には測定を終了し，
60秒を成績とした。各群とも12例の動物を用いた。

4. 回転棒試験による協調運動障害作用の評価

ジアゼパム，ロフラゼプ酸エチルあるいはCM7116と
フルボキサミンをマウスに同時投与し，その30分後にマ
ウスを10 rpmで回転する直径4 cmの回転棒の上に乗せ
その上で動物が落下せずに乗っていられるか否かを5分間
測定した。5分間の測定中に回転棒から落下した個体を
「協調運動障害作用あり」と判定した。なお，試験当日に
試験に先立って1分間のプレテストを実施し，落下しない
個体を選別して各群9〜10例の動物を試験に用いた。

5. 受動回避試験による健忘惹起作用の評価

試験には抗不安作用の評価に用いた明暗箱を用いた。試
験は獲得試行ならびにその翌日の再生試行とした。ベンゾ
ジアゼピン系薬物による健忘惹起作用は，薬物が体内に存
在する際に新しい情報を記憶できない，いわゆる前進性健
忘を特徴とするため(10)，受動回避試験でベンゾジアゼピ
ン系薬物の健忘惹起作用を検討する際には獲得試行の前に
薬物を投与するのが一般的である(11,12)。従って，今回
の検討でも獲得試行の30分前にジアゼパム，ロフラゼプ
酸エチルあるいはCM7116とフルボキサミンをマウスに
同時投与した。獲得試行ではマウスを明室に入れ，30分
後に行うギロチンア開放し，マウスが暗室に移動した直
後から，暗室の床に設けたリッドにショック・ジェネレ
電（0.25 mA，AC）した。マウスが明室に逃げ戻った後
ギロチンアを開放し，マウスをホームケージに戻した。
獲得試行の約24時間後に実施した再生試行では，マウス
を再び明室に入れる30分後にギロチンア開放し，マウ
スが暗室に移動するまでの時間（回避潜時）を記録した。
マウスが60秒以上明室に留まった場合に測定を終了し，
600秒を成績とした。なお，獲得試行において60秒以内
に明室から暗室へ移動しなかった動物は，翌日の再生試
行に用いなかった。再生試行に用いた動物数は各群10〜14
例であった。

6. 統計学的処理

明暗箱試験ならびに受動回避試験の成績は，中央値と四
分位間数で表した。溶媒（CMC）投与群と抗不安薬単独
投与群の比較ならびに抗不安薬の各用量単独投与群とフル
ボキサミン併用群の比較には，Steelの多変数比較を用いた。
溶媒（生理的食塩水）投与群に対するフルボキサミン単独
の影響についても，同様に解析した。回転棒試験では，5
分間の測定中に回転棒から落下した動物の比率（％）を求
実験結果

明暗箱試験における抗不安作用の成績を図1に示した。ジアゼパム、ロフラゼプ酸エチルならびにCM7116は用量依存的に運動停滞を短縮し、いずれも3.2 mg/kgで有意な抗不安作用を示した。一方、フルボキサミンは用量依存的に運動停滞を短縮し、それぞれの抗不安作用にフルボキサミンを併用すると、ジアゼパムおよびロフラゼプ酸エチルの0.32 mg/kg、CM7116の0.032から0.1 mg/kgにおいて、フルボキサミンの10 mg/kgによる抗不安作用の増強が観察された。フルボキサミンを45 mg/kgに増量するとロフラゼプ酸エチルに対する増強効果は観察されなかったが、ジアゼパムならびにCM7116に対する増強効果は認められなかった。

同様に、各種制御群における抗運動障害作用の成績を図2に示した。ジアゼパム、ロフラゼプ酸エチルならびにCM7116は用量依存的に運動障害を抑制した。それぞれの抗不安薬にフルボキサミンを併用すると、ジアゼパムの用量反応曲線がフルボキサミンの45 mg/kgを併用することにより用量依存的に運動障害を抑制することが観察され、ジアゼパムによる制御群にかけるED50値は、フルボキサミン45 mg/kgの併用により約4分の1に減少した。ロフラゼプ酸エチルならびにCM7116の用量反応曲線に対しては、フルボキサミンは明らかな影響を及ぼさなかった。

受動回避試験における発動起動作用の成績を図3に示した。ジアゼパム、ロフラゼブ酸エチルならびにCM7116は用量依存的に回避時間短縮し、ジアゼパムでは3.2 mg/kg以上、ロフラゼブ酸エチルでは10 mg/kg以上、CM7116では3.2 mg/kgで有意な発動起動作用が認められた。一方、フルボキサミンは、マウスの回避時間に影響しなかった。それぞれの抗不安薬にフルボキサミンを併用すると、ジアゼパムの32 mg/kgによる発動起動作用がフルボキサミンの45 mg/kgにより増強される傾向が観察されたが、ロフラゼブ酸エチルならびにCM7116の発動起動作用は明らかに影響を受けなかった。同様に、各薬物投与30分後に電気ショックの強度を順に増加させ（0.05，0.10，0.15，0.20，0.25 mA）、マウスの跳躍反応を示す電気ショックの閾値を測定したところ、抗不安薬あるいはフルボキサミンの併用ならびに両者の併用の用量においても、用量のない投与時の閾値と差違は認められなかった。また、獲得成績において60秒以内に電位から暗室に移動しなかった動物数はジアゼパム32 mg/kg単独群では13例中2例であったのに対して、ジアゼパム32 mg/kg +フルボキサミン45 mg/kg群では有意ではないも

Fig. 1 Effect of fluvoxamine (Flv; mg/kg, i.p.) on the anxiolytic effects of diazepam, ethyl loflazepate and CM7116 in the mouse light-dark box test. Each column represents the median latency and interquartile range of 12 mice. Significant differences: *P < 0.05, **P < 0.01; benzodiazepine vs. control group, *P < 0.05, **P < 0.01; with fluvoxamine vs. without fluvoxamine group (analyzed by the Steel multiple comparison test).
Fig. 2 Dose-response curves for diazepam, ethyl lofazepate and CM7116 treated with or without fluvoxamine (Flv; mg/kg, i.p.) in rota-rod test in mice. Data indicate the percent incidence of motor incoordination of 9-10 mice. Values represent ED_{50} and 95% confidence interval (mg/kg, i.p.).

Fig. 3 Effect of fluvoxamine (Flv, mg/kg, i.p.) on the amnesia induced by diazepam, ethyl lofazepate and CM7116 in mouse passive avoidance test. Each column represents the median avoidance latency and inter-quartile range of 10-14 mice. Significant differences: *P < 0.05, **P < 0.01: benzodiazepine vs. control group; (*) P < 0.10: with fluvoxamine vs. without fluvoxamine group (analyzed by the Steel multiple comparison test).
の21例中8例に増加した。ジアゼパムの10 mg/kg以下ならびにロフラゼプ酸エチルとCM7116では暗室に移動しなかった動物は各群とも0例であり、フルボキサミンの併用による影響は観察されなかった。

考 察

フルボキサミンを含めたSSRIの抗不安作用は、ベンゾジアゼピン系抗不安薬が効果を示す不安の評価系で必ずしも認められない。例えば、コンフリクト試験や高架式十字迷路試験は代表的な抗不安全評価モデルとして汎用されているが、SSRIが抗不安作用を示すという報告（13）、無効とする報告（14）、さらにはむしろ不安を増強するという報告（15,16）が散見し、一貫した成績は得られていない。今回不安評価系として用いた暗箱試験においても、SSRIは不安を増強する報告（17,18）と増強する報告（19）がある。フルボキサミンは前述のマウスのガラス玉を用いた行動試験（5,20）に加え、ラットの母仔関係誘発性超音波発声試験でも抗不安効果を示すが（21）、高架式十字迷路試験では無効とされている（22）。これらのことは、ベンゾジアゼピン系抗不安薬とSSRIの抗不安作用が質的に異なることを示していると考えられる。今回の検討においても、フルボキサミンの用量をマウスのガラス玉を用いた行動試験において著明な抗不安作用を示す45 mg/kgと明確な影響を示さない10 mg/kg（5）としたが、いずれの用量でも抗不安作用は認められなかった。一方、いずれのベンゾジアゼピン系抗不安薬も用量に依存した抗不安作用を示した。ベンゾジアゼピン系抗不安薬にフルボキサミンを併用すると、フルボキサミンの10 mg/kgはそれぞれ単独では充分な抗不安作用を示さない低用量のジアゼパム、ロフラゼプ酸エチルならびにCM7116の作用を増強し、単独で効果を示す用量の抗不安薬との併用では増強効果は観察されなかった。マウスのガラス玉を用いた行動試験においてもフルボキサミンの10 mg/kgと単独作用を示さない低用量のジアゼパムあるいはロフラゼプ酸エチルの併用による増強効果が観察されており（5）、今回の成績と良く一致する。しかしながら、フルボキサミンによる抗不安薬の効果増強は10 mg/kgで認められるものの、用量の45 mg/kgではロフラゼプ酸エチルを除いて観察されなかった。以上の結果は、ベンゾジアゼピン系抗不安薬とフルボキサミンを併用する際にはお互いの投与量を減量しても充分な抗不安効果が期待できることを示唆するものと考えられる。

不安の調節におけるセトロニン神経系の役割は非常に複雑であると考えられており、セトロニン受容体の各種サブタイプのいくつかがそれぞれ増強あるいは抑制的に不安を調節していることが明らかになりつつある。なかでも抗不安薬としてその作用機がすでに臨床応用されている5-HT1A受容体に関する研究が最も進んでおり、5-HT1A受容体作用薬はセトロニン神経活性を抑制することにより不安を抑制すると考えられている（23,24）。一方、ベンゾジアゼピン系抗不安薬もセトロニン神経活動を抑制することが知られており（25）、抗不安薬の作用の根拠にはセトロニン神経活動の抑制があると考えられている（23）。フルボキサミンはシナプス間隔のセトロニン量を上昇させることにより一次的に5-HT1A受容体を刺激し、セトロニン神経細胞の活動を抑制する（26）。さらに、ガラス玉を用いた行動試験におけるフルボキサミンの抗不安作用は、5-HT1A受容体遮断薬により抑制されることも確認されている（20）。これらのことは、フルボキサミンにより抗不安薬の効果が増強されたのは、抗不安薬のセトロニン神経活性抑制作用をフルボキサミンが助長したためと推察される。逆にセトロニン受容体サブタイプのうち5-HT2受容体遮断薬や5-HT3受容体の遮断薬に抗不安作用が認められることから、これからの受容体は不安を増強しているという仮説が提唱されている（27,28）。この仮説は、5-HT3受容体作用薬を脳内注入することにより不安が増強されるにも関わらず、セトロニン遮断薬を増加させると逆に不安が増強される事実（29）からも支持されている。これらのことから、フルボキサミンによる抗不安薬の効果増強が高用量で消減した結果、フルボキサミンにより増加したシナプス間隔のセトロニン薬が、5-HT1A受容体のみならず5-HT2受容体も刺激したためである可能性を考えられ、5-HT1A受容体はもともとセトロニンが高親和性で結合することから分類されたもので（30）、実際の5-HT1A受容体に対するセトロニンの親和性は5-HT2と5-HT3を含む5-HT受容体に対するそれより高い事実（31）も、この可能性を支持するものである。用量のフルボキサミンによる抗不安作用の増強がロフラゼプ酸エチルのみで観察された原因については、今回の検討からは明らかにできない。しかしながら、臨床で認められるロフラゼプ酸エチルの抗不安作用が、主に代謝物であるCM7116に由来する（6,7）ことを考えると、ロフラゼプ酸エチルよりもCM7116との相互作用の結果を重視すべきと思われる。フルボキサミンがそれぞれの抗不安薬の効果を修飾する上でのこれらの可能性を検討するためには、抗不安薬とフルボキサミンを併用した際のセトロニン神経活動やセトロニン遮断薬の測定、あるいはフルボキサミンによる抗不安薬の効果の増強がセトロニン受容体サブタイプ選択性薬物によりどのように影響されるかを比較検討する必要がある。

回転棒試験における協調運動障害作用ならびに受動回避試験における健康惹起作用の評価においても、すべてのベンゾジアゼピン系抗不安薬がほぼ用量に依存した作用を示
した。しかしながらフルボキサミンを併用すると、ジアゼパムの作用のみがフルボキサミンの45mg/kgにより増強あるいは増強される傾向が観察され、ロフラゼプ酸エチルおよびCMT116では明らかな増強効果は認められなかった。さらに、受動回避試験の獲得試験時の移動潜時はもと同様の併用効果が観察されており、これはジアゼパムとフルボキサミンの併用による鎮静効果を反映しているものと考えられる。ジアゼパムの副作用のみがフルボキサミンにより増強させられた原因は今回の検討の明示は明らかでない。しかしながら、ロフラゼプ酸エチルはベンゾジアゼピン系抗不安薬なかでも鎮静、筋弛緩、意識レベルの低下などの副作用が少ない特性を有するとされており（6,7,32）、このことがフルボキサミンによりその副作用が増強されない結果に結びついた可能性も考えられる。一方で、ジアゼパムの32mg/kg投与群の回避潜時は抗不安薬単独投与群よりも短いものであり、ロフラゼプ酸エチルやCMT116をさらに高用量で増強した場合にフルボキサミンによる増強効果が現れ也可能性は否定できない。副作用に関する今回の成績から、ジアゼパムが単独でも作用を示す高用量で増強される健忘惹起作用よりも、用量反応曲線そのものを低用量側に移動させる協調運動障害作用の方が、臨床上でより注意を払うべき相存作用かもしれない。

今回、薬物動態学的相互作用をもとに薬理学的な相互作用を重視する意味で、ベンゾジアゼピン系抗不安薬ならびにフルボキサミンの併用経路を腹腔内投与としたが、抗不安薬の代謝がフルボキサミンにより阻害された結果、それらの効果が増強された可能性も完全には否定できない。しかしながら、抗不安作用を及ぼす増強効果はもろしこフルボキサミンの低用量で観察されたこと、ジアゼパムの協調運動障害作用はフルボキサミンにより用量変化に平行関係したために対し、その健忘惹起作用はジアゼパムが単独で作用する高用量の時にのみ観察される場合、臨床観察された薬理学的な相互作用に薬物動態学的相互作用が上乗せされることを考慮すると、ベンゾジアゼピン系抗不安薬とフルボキサミンの併用による副作用の増加は報告されている（33）。

以上の成績より、フルボキサミンは低用量でベンゾジアゼピン系抗不安薬の主作用を増強するが、高用量では併用する抗不安薬によってはその副作用も増強することが示唆された。従って両者を併用する際には、お互いの用量を調節し十分な抗不安作用が期待できる可能性を踏まえて、副作用を回避するための慎重な用量設定が必要であると考えられる。

文献
5) 林 晶子、山下宣之、馬場 淳、市丸保幸: マウスのガラス玉裏へ細行行動に及ぼすfluvoxamineとdiazepam, ethyl loflazepate, imipramineの併用効果について、応用薬理 57, 103-108 (1999)
6) 植木昭明、渡辺健男、山本裕之、柴田産仲、柴田和彦、太田 和、池田加津子、前田義弘、佐藤陽子: Ethyl loflazepateおよびその代謝産物の行動薬理学的研究、日本薬理学会 82, 395-409 (1983)
10) 村崎光邦: BZの副作用−BZ健忘−、精神治療薬体系第4巻、抗不安薬、睡眠薬、高用量誘導監修、pp189-188、星和書店、東京 (1997)


Abstract - Effects of fluvoxamine on both the desired anxiolytic effect and the adverse motor incoordination and amnesia induced by benzodiazepines. Taiichiro IMANISHI, Kaname ONOZAWA, Akiko HAYASHI and Jun BABA (Pharmaceutical Research Center, Meiji Seika Kaisha, Ltd., 760 Morooka-cho, Kohoku-ku, Yokohama 222-8567, Japan).

Fluvoxamine, a selective serotonin reuptake inhibitor, is frequently used along with benzodiazepine anxiolytics in clinics. In this study, the effects of fluvoxamine on the anxiolytic effects as well as adverse effects of benzodiazepines were examined in the light/dark box, rota-rod and passive avoidance tests using mice. Diazepam, ethyl loflazepate and its active metabolite, CM7116, were used as benzodiazepine anxiolytics. The anxiolytic effects of diazepam, ethyl loflazepate and CM7116 were potentiated by intraperitoneal treatment with fluvoxamine at 10 mg/kg, whereas only those of ethyl loflazepate were potentiated by fluvoxamine at 45 mg/kg. The motor incoordination and amnesia induced by ethyl loflazepate and CM7116 were not affected by fluvoxamine, although these adverse effects of diazepam were potentiated by fluvoxamine at 45 mg/kg. Fluvoxamine itself showed no effects in any of the tests. These results suggest that low-dose fluvoxamine potentiates the anxiolytic effects of benzodiazepines, while high-dose fluvoxamine augments the adverse effects depending on the benzodiazepine used. Consequently, when fluvoxamine is administered along with benzodiazepines, the doses of both fluvoxamine and benzodiazepines should be carefully chosen to achieve anxiolytic effects without any adverse results.

Keywords: fluvoxamine; diazepam; ethyl loflazepate; drug interaction; mouse