Comprehensive Analysis of Polyphenols in Fruits Consumed in Japan

Shigenori KUMAZAWA, Michiko IKEGASHI, Yumiko USUI, Katsuko KAJIYAMA, Saeka MIWA, Junya ENDO, Chieko CHIKASHIMA, Yukiko SUZUKI, Yuya SUZUKI, Kayoko SHIMO and Tsutomu NAKAYAMA

1 Laboratory of Functional Food Science and Global COE Program in the 21st Century, School of Food and Nutritional Sciences, University of Shizuoka, 52-1 Yada, Suruga-ku, Shizuoka 422-8526, Japan
2 Institute for Environmental Sciences, University of Shizuoka, 52-1 Yada, Suruga-ku, Shizuoka 422-8526, Japan

Received June 26, 2006; Accepted May 17, 2007

Polyphenols, a large group of natural antioxidants, are a versatile group of phytochemicals beneficial for disease prevention. In this study, we comprehensively analyzed polyphenols, catechins, procyanidins, simple polyphenols, anthocyanins and flavonoids, in fruits consumed in Japan by high performance liquid chromatography with photo-diode array and mass spectrometric detection to complete the database of food components.

Keywords: polyphenol, fruits, HPLC, PDA

Introduction

Polyphenols form a large versatile group of phytochemicals that are natural antioxidants found to be potentially beneficial for disease prevention. Epidemiologic studies have recently revealed the association of higher polyphenol intake from fruits and vegetables with decreased risk of cardiovascular diseases (Stoclet et al., 2004; Manach et al., 2005). Furthermore, the regular consumption of certain foods and beverages such as apples, berries, wine, coffee and tea may significantly influence the quantity of antioxidants in a diet (Scalbert and Williamson, 2000). Thus, it is important to determine the amounts and species of polyphenols in foods.

The most recent edition (fifth) of the “Standard Tables of Food Composition in Japan” edited by the Resources Council of the Science and Technology Agency of Japan published in 2000 serves as the database of food components in Japan. It lists the contents, such as proteins, lipids, carbohydrates, minerals and vitamins, of various foods consumed in Japan, but lacks data on polyphenols. For example, fruits are rich in polyphenols, but their polyphenol content is not given. Since the role of polyphenols in foods is gaining attention, we comprehensively analyzed the contents of polyphenols in fruits consumed in Japan to complete the database of food components.

There are over one million natural polyphenols, which generally occur as glycosides, and contain various sugar species with various binding forms (Wollenweber and Dietz, 1981). Aglycons of polyphenols can be generally classified into flavonoids and simple polyphenols. Flavonoids are a family of compounds with a C6-C3-C6 skeleton structure. Flavanols, flavonols and anthocyanins are included in this group. Most of them have been shown to possess antioxidant activity, which depends mainly on the number and position of hydroxyl groups in their structure (Rice-Evans et al., 1996). There are two subgroups of simple polyphenols: benzoic acids (protocatechuic acid, gallic acid, etc.) and cinnamic acids (coumaric acid, caffeic acid, etc.) (Sakakibara, 2003).

A high-performance liquid chromatography (HPLC) separation method with photo-diode array (PDA) detection has been proposed to determine and quantify polyphenols in fruits by several groups (Crozier et al., 1997; Merken and Beecher, 2000). Although PDA is a useful technique for characterizing the aglycons of flavonoids, information on the molecular weight of compounds is not obtained from this method. Therefore, in addition to PDA, mass spectrometric (MS) detection technique in HPLC analysis has been applied for the identification of polyphenol compounds (Stobiecki, 2000). In the present study, we also used HPLC-PDA and HPLC-MS analysis to identify and quantify the polyphenols.

Materials and Methods

Materials Catechins were purchased from Sigma (St. Louis, MO, USA), anthocyanins and flavonoids were from Funakoshi (Tokyo, Japan), and simple polyphenols were from Wako Pure Chemicals Industries (Osaka, Japan). These chemicals were dissolved in dimethyl sulfoxide (DMSO) at a concentration of 10 mM and stored at −20°C in the dark for up to 3 months. Calibration curves of these polyphenols in solutions ranging from 1.0 to 1000 μM were made by HPLC with PDA.

Extraction of polyphenols from fruits Fresh fruit was obtained from local markets in Shizuoka City or directly...
from the producers. The edible portions were taken randomly from several individual samples and washed with tap water. After being chopped, they were homogenized in liquid nitrogen with a Nissei AM-8 homogenizer (Nihonseiki, Osaka, Japan). The homogenized powders were lyophilized for 48 h and stored at −20°C until use. Each sample was weighed after lyophilization and the water content was also obtained. The stored powders (50 mg) were extracted with 2 mL of 80% methanol containing 0.5% acetic acid, after adding 50 nmol of flavon in DMSO as an internal standard. The solution was allowed to stand in a sonicator for 1 min, and the supernatant was recovered by centrifugation at 1610 g for 10 min. After extraction three times, the extracts were concentrated with evaporator and dried with nitrogen gas. The residues were dissolved in 0.5 mL of 80% methanol or DMSO and filtered with a PTFE 0.45 μm membrane filter (Pall, East Hills, NY, USA) before HPLC analysis.

Total polyphenol contents Total polyphenol contents in the extracted powder from fruits were determined by the Folin-Ciocalteu colorimetric method (Kumazawa et al., 2002). Methanol extracts of the powders (1 mg/mL) were mixed with 1 mL of the Folin-Ciocalteu reagent (Kanto Chemicals, Tokyo) and 1 mL of 10% Na₂CO₃, and the absorbance was measured at 760 nm after 1 h incubation at room temperature. Total polyphenol contents were expressed as μmol/100 g gallic acid equivalents.

HPLC-PDA analysis The HPLC analysis of polyphenols was performed using a Jasco HPLC system (Tokyo) equipped with a PDA detector and a reversed phase column Capcell Pak C18 UG (5 μm; 250 × 4.6 mm i.d., 4.6 mm i.d., 5 μm; Shiseido, Tokyo, Japan). The flow rate was 1.0 mL/min, the injection volume was 10 μL, and the oven temperature was 30°C. The following solvents were used for analysis of catechins, procyanidins, simple polyphenols and anthocyanins: A, 0.1% trifluoroacetic acid (TFA) in water, and B, methanol. The gradient condition 1: 18% B (0–20 min), 18–22% B (20–50 min), 22% B (50–80 min), was applied for analysis of catechins, procyanidins and simple polyphenols. The gradient condition 2: 22–50% B (0–50 min), 50–70% B (50–80 min), was used for analysis of anthocyanins. For analysis of flavonoids, solvent A, 1% acetic acid in 10% methanol, and solvent B, 1% acetic acid in 70% methanol were used and the gradient condition 3: 0–30% B (0–15 min), 30–35% B (15–45 min), 35–40% B (45–65 min), 40–50% B (65–70 min), 50–100% B (70–85 min), 100% B (85–95 min), was applied.

Quantification of polyphenols Polyphenols were quantified under the analytical conditions described in HPLC-PDA. Each sample was injected in triplicate, and the standard calibration curves were constructed with the specific wavelengths of standard chemicals: 280 nm for catechins, procyanidins and simple polyphenols; 520 nm for anthocyanins and anthocyanidins; 350 nm for flavones and flavonols; and 290 nm for flavanones.

Results and Discussion

Sakakibara et al. (2003) reported a method for simultaneously determining the polyphenols in foodstuffs. However, in the present study, we analyzed the polyphenols in 59 kinds (varieties) of fruits by different three HPLC conditions. Fruits used for the present experiment were purchased from a local supermarket or directly from the producers.

The detected polyphenol peaks from extracts of fruits were compared with respect to retention time with those of standard chemicals, and next the aglycons were identified by comparison with those spectra. When the detected polyphenol did not coincide with any of the standards, the food samples were subjected to hydrolysis or LC/MS analysis. Hydrolysis was performed by the method reported by Sakakibara et al. (2003).

Table 1 shows the water content (%), total polyphenol content (μmol/100 g) and polyphenol content (μmol/100 g fresh edible part) of each fruit. Sakakibara et al. (2003) examined using Japanese radish root to determine the recovery with extraction, and they obtained recoveries 68–92% for added flavonoids, and the analytical precision ranged from 1 to 9%. We also performed the recovery with extraction experiment, and obtained the similar results to those of Sakakibara et al. (data not shown). Sakakibara et al. (2003) used flavone as an internal standard, and they corrected the recovery rate with it. Thus, we also used flavone as an internal standard, and the same data analysis were carried out. The water content of each fruit was similar to that described in the Standard Table of Food Composition in Japan. The Folin-Ciocalteu method we used for determination of total polyphenol contents is interfered by reducing substances (Prior et al., 2005). For example, total polyphenol contents of acerola shows high values caused by the high ascorbic acid content (Hwang et al., 2001).

Catechins, procyanidins and simple polyphenols were analyzed using HPLC condition 1. We detected (+)-catechin in atemoyas, peach and plum, and (−)-epicatechin in apple, apricot and cherimoya. Although (+)- catechin and (−)-epicatechin have been reported to be in various fruits (Luo et al., 2002; Yilmaz and Toledo, 2004), these compounds were not detected in the present study. This is assumed to be because we analyzed only the edible parts of the fruit not the skin or seed, where these compounds are mostly located.

Large amounts of procyanidins B1, B2 and C1, oligomers of catechins, were detected in atemoyas. Cherimoyas also contained considerable amounts of procyanidins. White sapotes also had high contents of procyanidin B1 and B2, especially the latter. Procyanidins are reported to be detected in various fruits such as apples and grapes (Peng et al., 2001). Although procyanidins as well as catechins exist in the skins and seeds of fruits, we did not analyze polyphenols in the skins or seeds of these fruits. Thus, the contents of procyanidins we obtained were lower than the reported values. Most fruits containing large amounts of catechins and procyanidins belong to the rose family, such as example, apples, peaches and plums.

Of the simple polyphenols, chlorogenic acids were detected in many fruits especially marmelo. Other pears
<table>
<thead>
<tr>
<th>Food (scientific name)</th>
<th>Water content (w/w)</th>
<th>Total polyphenol content (μmol/100 g)</th>
<th>Polyphenol content (μmol/100 g fresh edible part)</th>
<th>Polyphenols</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>flavonoids</td>
<td>simple polyphenols</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>cyanidins ^b</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>total anthocyanins ^c</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>total anthocyanidins ^d</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>quercetin glycosides ^e</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Acerola (Malpighia glabra)</td>
<td>90.0</td>
<td>19069</td>
<td>43.1</td>
<td>—</td>
</tr>
<tr>
<td></td>
<td></td>
<td>total anthocyanins ^c</td>
<td>24.1</td>
<td>—</td>
</tr>
<tr>
<td></td>
<td></td>
<td>total anthocyanidins ^d</td>
<td>56.7</td>
<td>—</td>
</tr>
<tr>
<td></td>
<td></td>
<td>quercetin glycosides ^e</td>
<td>4.5</td>
<td>—</td>
</tr>
<tr>
<td>Akebia (Akebia trifoliata)</td>
<td>77.9</td>
<td>1008</td>
<td>—</td>
<td>—</td>
</tr>
<tr>
<td>flesh</td>
<td>77.9</td>
<td>1008</td>
<td>—</td>
<td>—</td>
</tr>
<tr>
<td>peel</td>
<td>86.5</td>
<td>5128</td>
<td>quercetin glycosides ^e</td>
<td>238.1</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>neochlorogenic acid 227.1</td>
<td>—</td>
</tr>
<tr>
<td>Apple (Malus domestica)</td>
<td>85.2—87.3</td>
<td>1043</td>
<td>(−)-epicatechin 6.5—9.8</td>
<td>chlorogenic acid 26.6—52.8</td>
</tr>
<tr>
<td></td>
<td></td>
<td>procyanidin B1 4.6—6.9</td>
<td>—</td>
<td>—</td>
</tr>
<tr>
<td></td>
<td></td>
<td>procyanidin B2 12.7—18.2</td>
<td>—</td>
<td>—</td>
</tr>
<tr>
<td></td>
<td></td>
<td>procyanidin C1 2.8—5.4</td>
<td>—</td>
<td>—</td>
</tr>
<tr>
<td>Apricot (Prunus armeniaca)</td>
<td>92.5</td>
<td>119</td>
<td>rutin 0.2</td>
<td>chlorogenic acid 29.5</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>—</td>
<td>—</td>
</tr>
<tr>
<td></td>
<td></td>
<td>neochlorogenic acid 4.4</td>
<td>—</td>
<td>—</td>
</tr>
<tr>
<td>Japanese apricot (Prunus mume)</td>
<td>91.2</td>
<td>502</td>
<td>(−)-catechin 12.2</td>
<td>caffeic acid 5.3</td>
</tr>
<tr>
<td></td>
<td></td>
<td>(−)-epicatechin 13.4</td>
<td>—</td>
<td>—</td>
</tr>
<tr>
<td></td>
<td></td>
<td>procyanidin B2 6.1</td>
<td>chlorogenic acid 22.5</td>
<td>—</td>
</tr>
<tr>
<td></td>
<td></td>
<td>procyanidin C1 2.7</td>
<td>neochlorogenic acid 81.0</td>
<td>—</td>
</tr>
<tr>
<td></td>
<td></td>
<td>rutin 0.3</td>
<td>—</td>
<td>—</td>
</tr>
<tr>
<td>Atemoya (Annona reticulata)</td>
<td>78.1</td>
<td>4410</td>
<td>(−)-catechin 107.5</td>
<td>—</td>
</tr>
<tr>
<td></td>
<td></td>
<td>(−)-epicatechin 75.9</td>
<td>—</td>
<td>—</td>
</tr>
<tr>
<td></td>
<td></td>
<td>procyanidin B1 35.0</td>
<td>—</td>
<td>—</td>
</tr>
<tr>
<td></td>
<td></td>
<td>procyanidin B2 58.3</td>
<td>—</td>
<td>—</td>
</tr>
<tr>
<td></td>
<td></td>
<td>procyanidin C1 66.2</td>
<td>—</td>
<td>—</td>
</tr>
<tr>
<td>Avocado (Persea americana)</td>
<td>66.9</td>
<td>344</td>
<td>—</td>
<td>p-coumaric acid 6.5</td>
</tr>
<tr>
<td>Banana (Musa sapientum)</td>
<td>70.3—79.4</td>
<td>1136</td>
<td>myricetin glycosides ^e</td>
<td>1.0—7.3</td>
</tr>
<tr>
<td>Blue-berried honeysuckle (Lonicera caerulea subsp. edulis)</td>
<td>84.9</td>
<td>2211</td>
<td>(−)-catechin 4.8</td>
<td>chlorogenic acid 86.6</td>
</tr>
<tr>
<td></td>
<td></td>
<td>procyanidin B1 24.3</td>
<td>—</td>
<td>—</td>
</tr>
<tr>
<td></td>
<td></td>
<td>procyanidin B2 5.3</td>
<td>—</td>
<td>—</td>
</tr>
<tr>
<td></td>
<td></td>
<td>cyanidin-3-glucoside 26.0</td>
<td>—</td>
<td>—</td>
</tr>
<tr>
<td></td>
<td></td>
<td>pelargonidin-3-glucoside 2.0</td>
<td>—</td>
<td>—</td>
</tr>
<tr>
<td></td>
<td></td>
<td>cyanidin-3,5-diglucoside 1.8</td>
<td>—</td>
<td>—</td>
</tr>
<tr>
<td></td>
<td></td>
<td>cyanidins ^b 406.0</td>
<td>—</td>
<td>—</td>
</tr>
<tr>
<td></td>
<td></td>
<td>total anthocyanins ^c</td>
<td>65.6</td>
<td>—</td>
</tr>
<tr>
<td></td>
<td></td>
<td>total anthocyanidins ^d</td>
<td>423.0</td>
<td>—</td>
</tr>
<tr>
<td></td>
<td></td>
<td>rutin 23.4</td>
<td>—</td>
<td>—</td>
</tr>
<tr>
<td></td>
<td></td>
<td>quercetin glycosides ^e</td>
<td>16.2</td>
<td>—</td>
</tr>
</tbody>
</table>
Table 1-2. (Continued).

<table>
<thead>
<tr>
<th>Food (scientific name)</th>
<th>Water content (%)</th>
<th>Total polyphenol content (μmol/100 g)</th>
<th>Polyphenol content (μmol/100 g fresh edible part)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>flavonoids</td>
<td>simple polyphenols</td>
</tr>
<tr>
<td>Blueberry (Vaccinium spp.)</td>
<td>84.9—85.9 1104</td>
<td>malvidin-3-galactoside 8.7—18.2</td>
<td>cinnamic acid 1.7</td>
</tr>
<tr>
<td></td>
<td></td>
<td>malvidin-3-glucoside 0.2—8.8</td>
<td>caffeic acid 88.8</td>
</tr>
<tr>
<td></td>
<td></td>
<td>cyanidins b 9.1—9.2</td>
<td>chlorogenic acid 57.4—270.6</td>
</tr>
<tr>
<td></td>
<td></td>
<td>delphinidins b 27.2—52.1</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>malvidins b 79.0—134.0</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>peonidins b 1.5—2.7</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>total anthocyanins 75.1—80.1</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>total anthocyanidins 138.0—226.0</td>
<td></td>
</tr>
<tr>
<td>Cherimoya (Annona cherimola)</td>
<td>72.5 2612</td>
<td>(-)-epicatechin 172.5</td>
<td>—</td>
</tr>
<tr>
<td></td>
<td></td>
<td>procyanidin B1 34.2</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>procyanidin B2 130.4</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>procyanidin C1 37.7</td>
<td></td>
</tr>
<tr>
<td>Cherry (Prunus avium) Japan, sweet type</td>
<td>85.6 481</td>
<td>(+)-catechin 11.6</td>
<td>chlorogenic acid 6.7</td>
</tr>
<tr>
<td></td>
<td></td>
<td>(-)-epicatechin 11.5</td>
<td>neochlorogenic acid 57.8</td>
</tr>
<tr>
<td></td>
<td></td>
<td>procyanidin B1 3.5</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>cyanidin-3-rutinoside 0.5</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>cyanidins b 8.1</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>rutin 1.9</td>
<td></td>
</tr>
<tr>
<td></td>
<td>81.0—82.8 611</td>
<td>(+)-epicatechin 13.4—14.6</td>
<td>chlorogenic acid 10.0—16.1</td>
</tr>
<tr>
<td></td>
<td></td>
<td>(-)-epicatechin 6.9—37.0</td>
<td>neochlorogenic acid 51.9—266.2</td>
</tr>
<tr>
<td></td>
<td></td>
<td>procyanidin B1 0.0—12.0</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>cyanidin-3-rutinoside 2.7</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>cyanidins b 25.7</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>rutin 1.2—1.9</td>
<td></td>
</tr>
<tr>
<td>Chinese bayberry (Myrica rubra)</td>
<td>90.2 772</td>
<td>cyanidin-3-glucoside 0.7—1.1</td>
<td>—</td>
</tr>
<tr>
<td></td>
<td></td>
<td>myricetin glycosides 16.7</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>quercetin glycosides 1.4</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>rutin 0.3</td>
<td></td>
</tr>
<tr>
<td>Coconut (Cocos nucifera) coconut milk</td>
<td>— 9245</td>
<td>—</td>
<td>—</td>
</tr>
<tr>
<td>Date (Phoenix dactylifera) dried</td>
<td>15.2 1806</td>
<td>—</td>
<td>—</td>
</tr>
<tr>
<td>Durian (Durio zibethinus)</td>
<td>73.3 505</td>
<td>—</td>
<td>—</td>
</tr>
<tr>
<td>Fig (Ficus carica) raw</td>
<td>86.8 145</td>
<td>—</td>
<td>chlorogenic acid 1.6</td>
</tr>
<tr>
<td></td>
<td></td>
<td>neochlorogenic acid 3.0</td>
<td></td>
</tr>
<tr>
<td></td>
<td>dried 27.5 1343</td>
<td>—</td>
<td>neochlorogenic acid 22.7</td>
</tr>
<tr>
<td></td>
<td></td>
<td>quercetin glycosides 2.1</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>kaempferol glycosides 0.5</td>
<td></td>
</tr>
</tbody>
</table>

Table 1-3. (Continued).

<table>
<thead>
<tr>
<th>Food (scientific name)</th>
<th>Water content (%)</th>
<th>Total polyphenol content (µmol/100 g)</th>
<th>Polyphenol content (µmol/100 g fresh edible part)</th>
<th>flavonoids</th>
<th>simple polyphenols</th>
</tr>
</thead>
<tbody>
<tr>
<td>Garambola (Avicennia carambola)</td>
<td>91.2</td>
<td>632</td>
<td>(-)-epicatechin 15.0</td>
<td>—</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>procyanidin B2 18.9</td>
<td>—</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>procyanidin C1 5.7</td>
<td>—</td>
<td></td>
</tr>
<tr>
<td>Grape (Vitis spp.)</td>
<td>78.3</td>
<td>2163</td>
<td>cyanidin-3-glucoside 3.5</td>
<td>—</td>
<td></td>
</tr>
<tr>
<td>Delaware peeled</td>
<td>78.9</td>
<td>657</td>
<td>total anthocyanins 5 5.9</td>
<td>—</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>quercetin glycosides 1.7</td>
<td>—</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>(Rasins) dried 10.7</td>
<td>3545</td>
<td>quercetin glycosides 2.9</td>
</tr>
<tr>
<td>Kyoho peeled</td>
<td>78.5</td>
<td>2455</td>
<td>cyanidin-3-rutinoside 2.7</td>
<td>—</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>cyanidin-3-glucoside 1.0</td>
<td>—</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>malvidin-3,5-diglucoside 24.7</td>
<td>—</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>malvidin-3-glucoside 3.9</td>
<td>—</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>total anthocyanins 6 18.4</td>
<td>—</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>myricetin glycosides 9.4</td>
<td>—</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>quercetin glycosides 4.6</td>
<td>—</td>
<td></td>
</tr>
<tr>
<td>Guava (Psidium guajava)</td>
<td>83.9</td>
<td>2807</td>
<td>—</td>
<td>—</td>
<td></td>
</tr>
<tr>
<td>Japanese persimmon (Diospyros kaki) nonastringent</td>
<td>83.1</td>
<td>912</td>
<td>—</td>
<td>gallic acid 5.9</td>
<td></td>
</tr>
<tr>
<td>astringency removed</td>
<td>82.9</td>
<td>451</td>
<td>—</td>
<td>gallic acid 15.0</td>
<td></td>
</tr>
<tr>
<td>dried</td>
<td>19.0</td>
<td>1887</td>
<td>—</td>
<td>gallic acid 239.0</td>
<td></td>
</tr>
<tr>
<td>Jujube (Zizyphus jujuba) dried</td>
<td>13.2</td>
<td>4160</td>
<td>rutin 3.5</td>
<td>—</td>
<td></td>
</tr>
<tr>
<td>Kiwano (Cucumis melo)</td>
<td>90.3</td>
<td>85</td>
<td>—</td>
<td>—</td>
<td></td>
</tr>
<tr>
<td>Kiwifruit (Actinidia deliciosa)</td>
<td>83.9</td>
<td>1007</td>
<td>—</td>
<td>—</td>
<td></td>
</tr>
<tr>
<td>Kiwifruit gold</td>
<td>83.3</td>
<td>1743</td>
<td>—</td>
<td>chlorogenic acid 4.5</td>
<td></td>
</tr>
<tr>
<td>Lemon (Citrus limon) whole</td>
<td>83.2</td>
<td>2712</td>
<td>diosmin 134.4</td>
<td>—</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>hesperidin 917.4</td>
<td>—</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>eriocitrin 367.4</td>
<td>—</td>
<td></td>
</tr>
</tbody>
</table>
Table 1—4. (Continued).

<table>
<thead>
<tr>
<th>Food (scientific name)</th>
<th>Water content (%)</th>
<th>Total polyphenol content (μmol/100 g)</th>
<th>Polyphenol content (μmol/100 g fresh edible part)</th>
<th>simple polyphenols</th>
</tr>
</thead>
<tbody>
<tr>
<td>Lemon</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>(Citrus limon)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>fruit juice</td>
<td>—</td>
<td>148</td>
<td>diosmin 12.0</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>hesperidin 26.4</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>eriocitrin 17.0</td>
<td></td>
</tr>
<tr>
<td>Lime</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>(Citrus aurantifolia)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>fruit juice</td>
<td>—</td>
<td>310</td>
<td>diosmin 10.2</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>hesperidin 44.9</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>eriocitrin 13.4</td>
<td></td>
</tr>
<tr>
<td>Longan</td>
<td>77.1</td>
<td>526</td>
<td></td>
<td></td>
</tr>
<tr>
<td>(Euphoria longana)</td>
<td></td>
<td></td>
<td>canned in light syrup</td>
<td></td>
</tr>
<tr>
<td>Loquat</td>
<td>90.5</td>
<td>1064</td>
<td>(-)-epicatechin 15.2</td>
<td>chlorogenic acid 95.2</td>
</tr>
<tr>
<td>(Eriobotrya japonica)</td>
<td></td>
<td></td>
<td>procyanidin B2 6.6</td>
<td>neochlorogenic acid 89.7</td>
</tr>
<tr>
<td>Lychee</td>
<td>80.4</td>
<td>1894</td>
<td>rutin 0.7</td>
<td></td>
</tr>
<tr>
<td>(Litchi chinensis)</td>
<td></td>
<td></td>
<td>quercetin glycosides 4.1</td>
<td></td>
</tr>
<tr>
<td>Mango</td>
<td>85.2</td>
<td>706</td>
<td></td>
<td>gallic acid 0.8</td>
</tr>
<tr>
<td>(Mangifera indica)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Apple mangoe</td>
<td>82.9</td>
<td>547</td>
<td></td>
<td>gallic acid 7.5</td>
</tr>
<tr>
<td>Mangosteen</td>
<td>82.9</td>
<td>603</td>
<td></td>
<td></td>
</tr>
<tr>
<td>(Garcinia mangostana)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Melon</td>
<td>90.7</td>
<td>137</td>
<td></td>
<td></td>
</tr>
<tr>
<td>(Cucumis melo)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>green house culture</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>open culture</td>
<td>85.8</td>
<td>327</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Oriental melon</td>
<td>93.1</td>
<td>304</td>
<td></td>
<td></td>
</tr>
<tr>
<td>(C. melo var. makuwa)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Oleaster</td>
<td>86.6</td>
<td>4999</td>
<td></td>
<td></td>
</tr>
<tr>
<td>(Elaeagnus spp.)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Oroblanco</td>
<td>88.7</td>
<td>442</td>
<td>naringin 51.9</td>
<td>cryptochlorogenic acid 4.1</td>
</tr>
<tr>
<td>(Citrus paradisi)</td>
<td></td>
<td></td>
<td>narirutin 107.0</td>
<td></td>
</tr>
<tr>
<td>juice sacs</td>
<td></td>
<td></td>
<td>hesperidin 0.8</td>
<td></td>
</tr>
<tr>
<td>Papaya</td>
<td>88.9</td>
<td>1175</td>
<td></td>
<td></td>
</tr>
<tr>
<td>(Carica papaya)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>early ripening type</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>normal ripening type</td>
<td>90.7</td>
<td>902</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Passion fruit</td>
<td>85.0</td>
<td>285</td>
<td></td>
<td></td>
</tr>
<tr>
<td>(Passiflora edulis)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Peach</td>
<td>89.3—89.6</td>
<td>431</td>
<td>(+)-catechin 10.1—11.9</td>
<td>chlorogenic acid 6.3—7.0</td>
</tr>
<tr>
<td>(Purunus persica)</td>
<td></td>
<td></td>
<td>procyanidin B1 4.1—5.0</td>
<td>neochlorogenic acid 10.2—12.0</td>
</tr>
<tr>
<td>Food (scientific name)</td>
<td>Water content (%)</td>
<td>Total polyphenol content (µmol/100 g)</td>
<td>Polyphenol content (µmol/100 g fresh edible part)</td>
<td></td>
</tr>
<tr>
<td>-----------------------</td>
<td>-------------------</td>
<td>--------------------------------------</td>
<td>---</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>flavonoids</td>
<td>simple polyphenols</td>
<td></td>
</tr>
<tr>
<td>Nectarine (Purunus persica var. nucipersica)</td>
<td>90.4</td>
<td>563 (+)-catechin 12.6</td>
<td>chlorogenic acid 31.3 neochlorogenic acid 14.1</td>
<td></td>
</tr>
<tr>
<td>Pear</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Chinese pear (Pyrus ussuriensis)</td>
<td>87.4</td>
<td>547 —</td>
<td>chlorogenic acid 21.0</td>
<td></td>
</tr>
<tr>
<td>European pear (Pyrus communis)</td>
<td>85.9—86.2</td>
<td>580 (-)-epicatechin 0.0—4.4 procyanidin B2 0.0—6.2</td>
<td>chlorogenic acid 6.6—18.1</td>
<td></td>
</tr>
<tr>
<td>Japanese pear (Pyrus pyrifolia var. culta)</td>
<td>85.8—88.2</td>
<td>197 —</td>
<td>chlorogenic acid 3.1—7.2</td>
<td></td>
</tr>
<tr>
<td>Marmelo (Pyrus cydonia)</td>
<td>79.1</td>
<td>3087 —</td>
<td>chlorogenic acid 91.1 neochlorogenic acid 76.7</td>
<td></td>
</tr>
<tr>
<td>Pineapple (Ananas comos)</td>
<td>85.4</td>
<td>532 —</td>
<td>—</td>
<td></td>
</tr>
<tr>
<td>Pitaya</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Red pitaya (Hylocereus costaricensis)</td>
<td>85.2</td>
<td>256 rutin 1.2</td>
<td>—</td>
<td></td>
</tr>
<tr>
<td>Yellow pitaya (Selenicerus megalanthus)</td>
<td>81.1</td>
<td>456 —</td>
<td>—</td>
<td></td>
</tr>
<tr>
<td>Plum</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>European plum (Prunus domestica)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>raw</td>
<td>85.3</td>
<td>3809 (+)-catechin 19.9 procyanidin B1 17.9</td>
<td>caffeic acid 5.5 chlorogenic acid 30.8 cryptochlorogenic acid 4.0 neochlorogenic acid 223.0</td>
<td></td>
</tr>
<tr>
<td>dried</td>
<td>39.7</td>
<td>3141 —</td>
<td>caffeic acid 11.7 chlorogenic acid 35.2 cryptochlorogenic acid 142.7 neochlorogenic acid 369.1</td>
<td></td>
</tr>
<tr>
<td>Japanese plum (Prunus salicina)</td>
<td>91.1</td>
<td>1486 (+)-catechin 20.9 (-)-epicatechin 7.1 procyanidin B1 25.7 procyanidin B2 12.7 procyanidin C1 2.0</td>
<td>chlorogenic acid 3.0 cryptochlorogenic acid 6.1 neochlorogenic acid 23.8</td>
<td></td>
</tr>
<tr>
<td>Pomegranate (Punica granatum)</td>
<td>85.3</td>
<td>1447 cyanidin-3-glucoside 2.5 cyanidin-3,5-diglucoside 2.0 pelargonidin-3-glucoside 0.2 cyanidins b 23.4—40.9 delphinidins b 6.3—13.2 total anthocyanins c 7.8—13.5 total anthocyanins d 30.4—55.3 quercetin glycosides e 0.9</td>
<td>—</td>
<td></td>
</tr>
</tbody>
</table>
Table 1-6. (Continued).

<table>
<thead>
<tr>
<th>Food (scientific name)</th>
<th>Water content (%)</th>
<th>Total polyphenol content (μmol/100 g)</th>
<th>Polyphenol content (μmol/100 g fresh edible part)</th>
<th>simple polyphenols</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>flavonoids</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>chlorogenic acid</td>
<td>91.1</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>neochlorogenic acid</td>
<td>76.7</td>
</tr>
<tr>
<td>Quince (Cydonia oblonga)</td>
<td>79.1</td>
<td>3087</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Chinese quince (Chaenomeles sinensis)</td>
<td>85.7</td>
<td>2702</td>
<td>procyanidin B2</td>
<td>4.9</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>chlorogenic acid</td>
<td>53.0</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>neochlorogenic acid</td>
<td>75.6</td>
</tr>
<tr>
<td>Rasberry (Rubus idaeus)</td>
<td>87.5</td>
<td>2047</td>
<td>(-)-epicatechin</td>
<td>8.5</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>cyanidin-3-rutinoside</td>
<td>0.3—1.6</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>cyanidin-3-glucoside</td>
<td>0.6—1.2</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>total anthocyanins c</td>
<td>41.8</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>total anthocyanins d</td>
<td>116.0—141.0</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>quercetin glycosides a</td>
<td>1.6</td>
</tr>
<tr>
<td>Satsuma mandarin (Citrus unshiu) segments</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>early ripening type</td>
<td>90.2</td>
<td>956</td>
<td>hesperidin</td>
<td>233.9</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>narirutin</td>
<td>85.9</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>didmy</td>
<td>10.0</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>rutin</td>
<td>3.1</td>
</tr>
<tr>
<td>normal ripening type</td>
<td>88.7</td>
<td>972</td>
<td>hesperidin</td>
<td>291.1</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>narirutin</td>
<td>283.2</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>didmy</td>
<td>26.1</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>rutin</td>
<td>3.7</td>
</tr>
<tr>
<td>juice sacs</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>early ripening type</td>
<td>90.8</td>
<td>712</td>
<td>hesperidin</td>
<td>112.0</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>narirutin</td>
<td>58.6</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>rutin</td>
<td>3.7</td>
</tr>
<tr>
<td>normal ripening type</td>
<td>89.8</td>
<td>962</td>
<td>hesperidin</td>
<td>139.8</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>narirutin</td>
<td>95.6</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>didmy</td>
<td>5.2</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>rutin</td>
<td>3.3</td>
</tr>
<tr>
<td>Strawberry (Fragaria grandiflora =Fragaria × ananassa)</td>
<td>88.3—92.0</td>
<td>987</td>
<td>(+)-catechin</td>
<td>8.6</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>pelargonidin-3-glucoside</td>
<td>1.7—4.1</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>cyanidins b</td>
<td>8.9</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>pelargonidins b</td>
<td>23.3</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>total anthocyanins c</td>
<td>2.9—6.3</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>total anthocyanins d</td>
<td>45.6</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>quercetin glycosides a</td>
<td>0.4—3.4</td>
</tr>
<tr>
<td>Sudachi (Citrus sudachi) fruit juice</td>
<td>—</td>
<td>313</td>
<td>narirutin</td>
<td>107.2</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>hesperidin</td>
<td>21.1</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>naringin</td>
<td>17.2</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>eriocitrin</td>
<td>9.5</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>neohesperidin</td>
<td>9.0</td>
</tr>
</tbody>
</table>
Total polyphenol contents were expressed as mmol/g gallic acid equivalents by the Folin-Ciocalteu method. Contents of these aglycons were determined by hydrolysis. Contents were determined using cyanidin-3-glucoside. Contents of these glycosides were determined using aglycons. Several analytical studies of anthocyanins in blueberries have been reported (Dugo et al., 2001; Faria et al., 2005). We identified each anthocyanin in blueberries using the HPLC conditions reported previously by comparison with standard anthocyanin compounds. Other red fruits such as acerolas, pomegranates and strawberries also have anthocyanins. Anthocyanidin peaks identified by hydrolysis were presented such as cyanidins and delphinidins. But anthocyanin peaks not in agreement with standard chemicals were quantified with cyanidin-3-glucoside and were presented as total anthocyanins. Anthocyanidin peaks obtained by hydrolysis of these unknown anthocyanins were similarly quantified with cyanidin and were presented as total anthocyanidins. Although red pitaya has a bright red color, no anthocyanins were detected. Color pigments of this fruits were expected to be betacyanins not anthocyanins (Wybraniec and Mizrahi, 2003). We could not quantitatively analyze the betacyanins because the standard chemicals were not available.

Many flavonoids have been isolated and identified from various plants including fruits. Flavonoids have been the subject of considerable scientific and therapeutic researches (Havsteen, 2002). We identified each flavonoid glycoside using three HPLC conditions. Most flavonoids occur in glycoside forms. To identify the aglycon of each flavonoid, we performed hydrolysis or the LC/MS/MS analysis. The flavonoid glycoside peaks not in agreement with standard chemicals but with aglycons identifiable by hydrolysis were quantified their aglycons and were presented such as quercetin glycosides. Consequently, as shown in Table 1, quercetin glycosides have been detected in various fruits. The flavanones narirutin and hesperidin were detected only in citrus fruits such as Satsuma mandarins and sudachi, while eriocitrin was detected in lemons and limes. These results were in agreement with those reported by Sakakibara et al. (2003).

In the present study, we analyzed polyphenols in fruits consumed in Japan. Although there have been many reports on polyphenols, there are few on the sample preparation and analysis under systematic conditions. The present findings may be helpful for understanding the physiological properties of polyphenols in fruits. In this study, however, several components reported previously were not detected, or the values obtained were different from the reported values. This is considered to be due to the difference between the quality or harvest season of fruits used in this study. Analysis of only the edible parts of fruits in this study may also be a reason. Perishable foods such as fruits and vegetables are different in their seasonal nature. Furthermore flavonoid content is known to be highly dependent on the cultivar and growing and processing conditions (Harnly et al., 2006). In Table 1, the results analyzed three times from different fruits (same kind) were also shown. Thus, it is considered that the results with the wide range are due to the difference of samples not inaccuracy of the analytical methods.

Table 1-7. (Continued).

<table>
<thead>
<tr>
<th>Food (scientific name)</th>
<th>Water content (%)</th>
<th>Total polyphenol content (μmol/100 g)</th>
<th>Polyphenol content (μmol/100 g fresh edible part)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>flavonoids</td>
<td>simple polyphenols</td>
</tr>
<tr>
<td>Watermelon (Citrullus vulgaris)</td>
<td>91.7</td>
<td>181</td>
<td></td>
</tr>
<tr>
<td>White sapote (Achras zapota)</td>
<td>81.8</td>
<td>980 procyanidin B2 87.1</td>
<td>caffeic acid 8.2</td>
</tr>
<tr>
<td></td>
<td></td>
<td>procyanidin C1 25.8</td>
<td></td>
</tr>
<tr>
<td>Yuzu (Citrus junos) fruit juice</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>early ripening type</td>
<td>—</td>
<td>unexamined narirutin 44.6</td>
<td>cryptochlorogenic acid 1.1</td>
</tr>
<tr>
<td></td>
<td></td>
<td>hesperidin 18.8</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>naringin 10.4</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>neohesperidin 4.8</td>
<td></td>
</tr>
<tr>
<td>normal ripening type</td>
<td>—</td>
<td>unexamined narirutin 29.7</td>
<td>cryptochlorogenic acid 0.9</td>
</tr>
<tr>
<td></td>
<td></td>
<td>hesperidin 14.9</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>naringin 7.3</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>neohesperidin 4.1</td>
<td></td>
</tr>
</tbody>
</table>

*Total polyphenol contents were expressed as mmol/100 g gallic acid equivalents by the Folin-Ciocalteu method.
*Contents of these aglycons were determined by hydrolysis.
*Contents were determined using cyanidin-3-glucoside.
*Contents were determined using cyanidin.
*Contents of these glycosides were determined using aglycons.
Some of the present data are available through the web page (http://www.nihn.go.jp/FFF/). A more complete database of functional food factors will be useful for further analyses of their effects on human health. Furthermore, the present findings should prove valuable for elucidating the roles that polyphenols in fruits may play in promoting health in Japan.

Acknowledgements This work was supported by the Special Coordination Funds of the Ministry of Education, Culture, Sports, Science and Technology of Japan.

References

