Mechanism Involved in the Formation of Characteristic Taste and Flavor during the Production of Dried Herring (Clupea pallasii) Fillet

A.K.M. Azad Shah¹, Tomoe Ishihara², Masashi Ogawara³, Hideyuki Kurihara¹, Naomichi Baba² and Koretaro Takeshita¹*

¹ Division of Marine Life Science, Graduate School of Fisheries Sciences, Hokkaido University, 3-1-1 Minato-cho, Hakodate 041-8611, Japan
² Division of Bioscience, Graduate School of Natural Science and Technology, Okayama University, 1-1-1 Tsushimanaka, Okayama 700-8530, Japan
³ Food Research & Development Laboratory, Kirin Kyowa Food Co., Ltd., 4041-Ami, Ami-machi, Inashiki-gun, Ibaraki 300-0398, Japan

Received September 3, 2009; Accepted January 4, 2010

The objective of this study was to identify the mechanisms responsible for the characteristic taste and flavor of dried herring fillet (DHF, migaki-nishin in Japanese). Dialyzed water-soluble fractions (DWSF) obtained from herring fillet were dried for 4 days, mixed with fatty acids, and the reaction products were evaluated for their effects on sensory perception. To clarify the mechanisms of in situ chemical changes in DHF lipid, ESI-MS analysis was done using a phosphatidylcholine probe. Sensory evaluation revealed that addition of the reaction products of DWSF with docosahexaenoic acid to Japanese noodle soup significantly (P < 0.05) enhanced soup flavor characteristics, such as thickness, mouthfulness, and continuity, compared to the reaction products of DWSF with linoleic acid or capric acid. ESI-MS analyses showed that lyso-derivatives were the most abundant compounds in the lipid fraction of DHF. A small amount of lipid oxidation products and their reaction products were also observed in DHF. This study demonstrated that during the drying period, partial hydrolysis of lipids released free fatty acids. These free fatty acids, or their oxidation products, might react with amino acid-related compounds to generate the characteristic taste and flavor of DHF.

Keywords: herring, fatty acid, water-soluble fraction, sensory perception

Introduction

Dried herring (Clupea pallasii) fillet (DHF, migaki-nishin in Japanese) is a traditionally popular food item in Japan due to its remarkable flavor-enhancing properties. It is widely used as an ingredient in savory dishes including noodles. In particular, addition of DHF to noodle soup enhances flavor characteristics, such as thickness, mouthfulness, and continuity. It is thought that herring fillets obtain their unique taste and flavor during the drying period. Preliminary experiments showed that addition of the dialyzed water-soluble fraction (MW 1000–5000) of DHF to Japanese noodle soup enhanced the soup flavor characteristics, such as thickness, mouthfulness and continuity, so-called kokumi in Japanese (unpublished results). In another study, we observed a substantial increase of free fatty acids, especially docosahexaenoic acid (DHA), during drying of herring fillet and a correlation between sensory perception and the level of free fatty acids (Shah et al., 2009a). Furthermore, Koriyama et al. (2002a) reported that the increase of DHA content (up to 59%) in oil linearly enhanced umami and flavor (continuity and richness) of synthetic tuna extract.

Although oil has no taste of its own, it alters taste perception by increasing the viscosity or fluidity of food, which affects the diffusion coefficients and retention time of taste substances in the mouth (Mela et al., 1994; Pikielna et al., 1994). In addition, long-chain fatty acids (LCFA, number of carbons > 16) seem to be responsible for lipid perception in
the oral cavity (Smith et al., 2000; Fukuwata et al., 2003). This observation might seem paradoxical since dietary lipids are mainly comprised of triglycerides (TG). Lingual lipase is especially efficient at releasing LCFA from TG in rodents (Kawai and Fushiki, 2003). In humans, the detection threshold for LCFA is particularly low (Chale-Rush et al., 2007) in comparison to TG (Schiffman et al., 1998), despite the lack of efficient TG hydrolysis by lingual lipase (Hamosh, 1990). However, addition of free fatty acids to tastants (His + lactic acid, quinine sulfate, Leu, and IMP + MSG) as oil-in-water emulsions significantly changes taste intensity (Koriyama et al., 2009). Moreover, free fatty acids found in food itself and those derived from oils by lingual lipase may play a direct role in taste perception (Gilbertson et al., 1997).

Marine lipids, which contain higher quantities of n-3 polyunsaturated fatty acids, are susceptible to oxidation following successive degradation (Gardner, 1983). It is known that lipid oxidation takes place in fatty fish species during processing and storage, e.g., herring lipid is susceptible to oxidation both in situ in the tissues and when extracted from the tissues (Shahidi and Spurvey, 1996; Undeland et al., 1999). Moreover, non-conjugated all-cis olefinic structures in polyunsaturated fatty acyl groups in phospholipids are very sensitive to oxidation, with hydroperoxide being the primary product (Kappus, 1985). It is well documented that hydroperoxides are further degraded into aldehydes (Sun et al., 2002), which are reactive to biological nucleophiles, such as the ε-amino group in lysine. However, little is known regarding in situ chemical changes of phospholipid during drying of herring fillet. A combination of molecular probe and mass spectrometric analysis has proved to be a useful method in identifying the chemical changes in a specific lipid (Shimizu et al., 2009). This novel approach led to the structural and functional identification of lipid molecular species and their oxidation products, such as structural changes in phospholipid hydroperoxides in human blood (Shimizu et al., 2009) and tracing of phospholipase D activity (Oda et al., 2009).

The objective of this study was to investigate the ability of fatty acids (capric acid, linoleic acid and DHA) to enhance the flavor of dialyzed water-soluble fractions of DHF4 in Japanese noodle soup. To better understand in situ chemical changes in lipids during drying of herring fillet, a synthesized phospholipid probe was inserted in the herring fillet and chemical changes in the lipid were analyzed with ESI-MS.

Materials and Methods

Chemicals
Fatty acids (capric acid, C10:0; purity: >99%, peroxide value (PV): 0.42 meq/kg and carbonyl value (CV): <0.10 meq/kg, and linoleic acid, C18:2; purity: >99%, PV: 0.80 meq/kg and CV: <0.10 meq/kg) were purchased from Nu-Chek-Prep (Elysian, MN, USA). Docosahexaenoic acid (C22:6; purity: 98.6%, PV: 1.29 meq/kg, CV: 0.17 meq/kg) was obtained from Nippon Chemical Feed Co. Ltd., Hakodate, Japan. All other chemical solvents were of analytical or HPLC grade. The phosphatidylcholine (PC) probe, 2-[(4Z,7Z,10Z,13Z,16Z,19Z)-4,7,10,13,16,19-docosahexaenoyl]-1-heptadecanoyl-sn-glycero-3-phosphoethyl(N,N,N-dimethylethyl)ammonium (HD-DHA-PC/Et) was synthesized according to methods reported by Baba et al. (1990) and Shimizu et al. (2009).

Sensory evaluation
The flavor-enhancing activity of
DWSF from DHF4 and DHF10, as well as reaction products and mixture of DWSF and fatty acids on Japanese noodle soup was evaluated following the method of Ueda et al. (1997), with some modifications. Japanese noodle soup was prepared according to a method by Shah et al. (2009a). It was diluted with six volumes of distilled water and used as a control solution. Test samples were dissolved into Japanese noodle soup at a concentration of 0.05% (w/v). After addition of the test samples to Japanese noodle soup, the solution was heated at 60°C in a water bath. Approximately 50 mL of the test and control solutions were served in opaque disposable plastic cups at the same time. Panel members were instructed to put an adequate volume in the mouth, and then to expectorate. The panelists were asked to judge the intensities of the test samples using a scale of 1 to 7, where “3” was assigned to the control solution. Scoring was done on the basis of saltiness, umami, thickness, mouthfulness, and continuity. Sensory evaluations were performed in separate sensory booths. The panel was composed of five trained assessors (3 men and 2 women; ages between 26 and 37 years) from the Food Research and Development Laboratory, Kirin Kyowa Food Co. Ltd., Ibaraki, Japan. All the panel members had extensive experience in tasting and agreed on the intensities of saltiness, umami, thickness, mouthfulness, and continuity. Sensory evaluations were performed in separate sensory booths.

In situ chemical changes of synthesized phospholipid probe in DHF

Ten microliters of phosphatidylcholine probes, HD-DHA-PC/Et (Fig. 1) (11.9 mM in ethanol) were injected into a fresh herring fillet using a micro-syringe. The herring fillet was then placed into a Humidic Chamber IG 400 (Yamato, Tokyo, Japan) and dried under constant temperature (14°C) and relative humidity (45%). After drying for 10 days, the parts of the fillet containing HD-DHA-PC/Et were cut into small pieces (10 mm × 10 mm). A mixture of chloroform/methanol (5 mL, 1:2) with a trace amount of BHT was added to each piece and filtration was done using a filter paper. After evaporating the solvent under reduced pressure, the residue was dissolved in a mixture of acetonitrile/methanol/water (215:194:16) with 0.1% ammonium acetate and infused directly into the positive ion mode tandem electrospray ionization-mass spectrometer (ESI-MS) for spectral acquisition. ESI-MS was conducted using a Perkin-Elmer SCIEX (Thornhill, ON, Canada) API-III tandem quadrupole mass spectrometer. The scan range was m/z 510-850. In the product ion scan mode, derivatives from the PC probe HD-DHA-PC/Et showed a single peak at m/z 198 as a product ion in ms/ms scan mode, which was the N,N,N-trimethylammonioethyl phosphate ion.

Statistical analysis

Significant differences between the test samples were assessed using the Wilcoxon test for two independent samples and the Kruskal-Wallis test for k-independent samples (k > 2) at a 95% confidence level (P < 0.05) (Zar, 1984). This was followed by Mann-Whitney U test to allow identification of between-group differences. Results are presented as means, but differences were calculated with the mean ranked scores. All the analyses were performed using Statgraphics Plus version 2.1 (StatPoint, Inc., Virginia, USA).

Results and Discussion

Taste characteristics of DWSF

The DWSF were prepared from DHF4 and DHF10, and subjected to sensory analysis to evaluate their flavor-enhancing activity on Japanese noodle soup. DWSF in distilled water at a concentration of 0.10% were evaluated as nearly tasteless but acquired a faint aroma (data not shown). However, addition of the DWSF from DHF10 to Japanese noodle soup significantly (P < 0.05) increased the intensities of thickness and continuity of the soup flavor compared to the addition of the DWSF from DHF4, whereas the basic taste qualities, such as saltiness and umami, remained almost unaffected (Fig. 2A). These results suggest that the DWSF from DHF10 might contain some of the flavor-enhancing substances that are generated during the drying period. In our previous study, we found that addition of DHF water-soluble extracts to Japanese noodle soup enhanced the soup flavor characteristics, such as thickness, mouthfulness and continuity, and enhancement of these flavor characteristics increased with drying time (Shah et al., 2009b). Therefore, we postulated that during the drying period, low molecular weight compounds, such as free amino acids and peptides, are formed, which might interact with free fatty acids released as a result of lipid hydrolysis or with

Fig. 1. Chemical structure of the synthesized phosphatidylcholine probe.
the increased level of DHA in the dried herring fillet was very similar to the level of DHA (0.10%) added to DWSF. The addition of the reaction products of the DWSF from DHF4 and DHA to Japanese noodle soup significantly ($P < 0.05$) enhanced the intensities of thickness, mouthfulness, and continuity of Japanese noodle soup compared to the addition of the DWSF from DHF4 (Fig. 2B). These results suggest that DHA interacts with water-soluble compounds during the drying period giving reaction products that enhance kokumi in DHF. Koriyama et al. (2002a) also reported that the increase in DHA content in oil linearly enhanced umami and flavor (continuity and richness) of synthetic tuna extract. However, results from studies on goat cheese differ from the findings of this study. Engel et al. (2000) reported that peptides (<MW 500 Da), as well as lipids, had no impact on the gustatory characteristics of reconstituted water-soluble extract in goat cheese.

Taste-enhancing effects of the reaction products or mixture of DWSF and DHA The taste profile of Japanese noodle soup containing the reaction products or a mixture of DHA and DWSF from DHF4 are shown in Fig. 3. Sensory evaluation showed that the reaction products of DWSF and DHA significantly ($P < 0.05$) enhanced the intensities of thickness, mouthfulness, and continuity of the Japanese noodle soup compared to the mixture of the DWSF and DHA. These results suggest that during the reaction of DWSF with DHA, some products are generated that enhance the flavor of the final product.

![Fig. 2](image1.png)
Fig. 2. Taste profile of Japanese noodle soup containing the dialyzed water-soluble fractions from the herring fillets dried for 4 and 10 days (A), and containing reaction products of the dialyzed water-soluble fraction of the herring fillet dried for 4 days and DHA (B). Taste intensity was scored on a 7-point scale where “3” was assigned to the Japanese noodle soup. Means with different letters in each attribute indicate significant differences ($P < 0.05$).

![Fig. 3](image2.png)
Fig. 3. Taste profile of Japanese noodle soup containing DHA and the dialyzed water-soluble fraction (DWSF) from the herring fillet dried for 4 days. Taste intensity was scored on a 7-point scale where “3” was assigned to the Japanese noodle soup. Means with different letters in each attribute indicate significant differences ($P < 0.05$).
properties of the Japanese noodle soup. It has been reported that pyrrole formation and polymerization take place when an unoxidized fatty acid is incubated at 37°C in the presence of an amino acid (Zamora et al., 2000). In addition, many studies have shown that lipid oxidation products are able to react with amines, amino acids, and proteins, producing various compounds that influence food quality, such as browning reaction, odor and flavor formation, loss of nutritional quality, and production of compounds with antioxidant effects (Gardner, 1979; Friedman, 1996; Belitz and Grosch, 1987).

Comparison of the effect of fatty acids on the flavor enhancement of DWSF. To investigate the effect of fatty acids, DWSF was reacted with capric acid (C10:0), linoleic acid (C18:2) and DHA (C22:6), and sensory evaluation of the Japanese noodle soup was performed. The addition of the reaction products of DWSF and unsaturated fatty acids (linoleic acid and DHA) resulted in a pronounced increase in flavor intensities such as thickness, mouthfulness, and continuity of the Japanese noodle soup (Fig. 4). The reaction products of DWSF with DHA showed significantly ($P < 0.05$) higher flavor-enhancing activity compared to those of DWSF with linoleic or capric acid. The low flavor-enhancing effect of the reaction products with capric acid might be attributed to the low affinity for fatty acid receptors expressed in the tongue. These results suggest that the flavor-enhancing properties of fatty acid interacted with DWSF depends on a number of properties of the Japanese noodle soup.

Comparison of the effect of fatty acids on the flavor enhancement of DWSF. To investigate the effect of fatty acids, DWSF was reacted with capric acid (C10:0), linoleic acid (C18:2) and DHA (C22:6), and sensory evaluation of the Japanese noodle soup was performed. The addition of the reaction products of DWSF and unsaturated fatty acids (linoleic acid and DHA) resulted in a pronounced increase in flavor intensities such as thickness, mouthfulness, and continuity of the Japanese noodle soup (Fig. 4). The reaction products of DWSF with DHA showed significantly ($P < 0.05$) higher flavor-enhancing activity compared to those of DWSF with linoleic or capric acid. The low flavor-enhancing effect of the reaction products with capric acid might be attributed to the low affinity for fatty acid receptors expressed in the tongue. These results suggest that the flavor-enhancing properties of fatty acid interacted with DWSF depends on a number of properties of the Japanese noodle soup.

Fig. 4. Taste profile of Japanese noodle soup supplemented with the reaction products of the dialyzed water-soluble fraction from herring fillet dried for 4 days and fatty acids. Taste intensity was scored on a 7-point scale where “3” was assigned to the Japanese noodle soup. Bars represent mean ± SD (n = 5). Means with different letters in each attribute indicate significant differences ($P < 0.05$).

Fig. 5. A typical ESI-MS spectrum of the reaction products of phosphatidylcholine probe recovered from dried herring fillet. Precursor ion scan mode was selected using m/z 198 as the product ion.
Fig. 6. Presumed chemical structures of the compounds identified from dried herring fillet lipids by ESI-MS.
of factors, such as carbon chain length, degree of unsaturation of the fatty acids and their interacted compounds. It has been reported that low concentrations of oxidation products are detectable and preferred by animals (Ramirez, 1992). The detection threshold of oxidized linoleic acid was found to be lower than that of linoleic or desensitization linoleic acid on human taste perception (Chale-Rush et al., 2007). Furthermore, taste receptor cells isolated from buds in the rat fungiform papillae depolarize in the presence of cis-polynsaturated fatty acids but do not respond to monounsaturated or saturated fatty acids (Gilbertson et al., 1997). We also assumed that the reaction products of DWSF from DHA4 with DHA might directly affect human taste perception.

In situ chemical changes of synthesized phospholipid probe in dried herring fillet In order to investigate the in situ chemical changes in lipid that occurred during drying of herring fillet, ESI-MS analysis was done using a phosphatidylcholine molecular probe. Polyunsaturated olefinic structures are very sensitive to oxidation and ester bonds are susceptible to hydrolysis; both are common structures for phospholipids and triglycerides (Koizumi, 1992). Therefore, we assumed that similar chemical reactions might occur both for the phospholipids and triglycerides in the herring muscle during the production of dried herring fillet. A synthetic molecular probe for triglycerides is not yet available to identify such chemical changes; therefore, a phosphatidyldcholine probe was selected for this study. A typical ESI-MS spectrum of the reaction products of the PC probe (HD-DHA-PC/Et) in the lipid fraction of DHF is shown in Fig. 5. Based on the information obtained by positive-ion ESI-MS, presumed chemical structures of compounds 1–6 obtained from DHF lipids are shown in Fig. 6. The major peak at m/z 834.84 (1, calcd. m/z 834.6 [M + H]+) corresponded to the remaining PC probe. The most abundant peaks at m/z 524.46 (2, calcd. m/z 524.37 [M + H]+) and m/z 582.54 (3, calcd. m/z 582.36 [M + H]+) were tentatively identified as lyso-PC/Et species, suggesting that lipolysis occurred in herring fillet during the drying period (Shah et al., 2009a). Another small peak was observed at m/z 808.62 (4, calcd. m/z 808.55 [M + H]+), tentatively identified as the oxidation product of DHA residue. During the oxidation of lipids, formation of carbonyl compounds such as aldehydes and ketones through the degradation of lipid hydroperoxides can therefore be predicted in DHF. In the DHF lipid, however, there is a possibility of formation of various imines (compounds 5–6) during the drying period. The presumed structure of compound 5 (calcd. m/z 561.33 [M + H]+) might be interacted compounds, i.e., amine conjugated with aldehydes. These results indicate that during the drying period, products of lipid oxidation might interact with amino acid-related compounds to generate the characteristic taste and flavor of the DHF. It has been reported that some lipid oxidation products are able to react with the ε-amino groups of the lysine residues producing pyrrole aminoa acids, and these compounds may be in part responsible for some of the changes produced in foods as a consequence of oxidized lipid/protein reactions (Hidalgo and Zamora, 1993; Zamora et al., 2000). Previous work showed that the available lysine content in herring fillet decreased significantly (P < 0.05) as drying progressed, indicating that non-enzymatic browning occurred due to the interaction between carbonyl compounds formed by lipid oxidation and ε-amino groups of lysine (Shah et al., 2009b).

The results of this study demonstrated that the reaction products of DWSF from DHA4 with DHA strongly enhanced soup flavor characteristics, such as thickness, mouthfulness, and continuity, so-called kokumi. Moreover, in situ chemical changes of lipids revealed that a small amount of secondary oxidation products and their reaction products are generated during drying of herring fillet. Thus, it can be concluded that during the drying period, partial hydrolysis of lipids releases free fatty acids, which might react directly, or via their oxidation products, with amino compounds (such as lysine) to generate the characteristic taste and flavor of DHF. Identification of the kokumi imparting compounds, as well as structure-taste activity relationships of these compounds, is currently under investigation.

Acknowledgment The authors thank the members of the sensory panel of the Food Research and Development Laboratory, Kirin Kyowa Food Co. Ltd., Ibaraki, Japan, for their help with sensory assessments.

References

Fukuwatari, T., Shibata, K., Iguchi, K., Saeki, T., Iwata, A., Tani,

