Planula larvae of acroporids reveal strong autofluorescence all over the body after treatment with aldehyde fixatives (Fig. 1A), but live planulae of *Acropora tenuis* show different autofluorescence. Green fluorescence by B-excitation revealed typical bipolar neurons with varicosities along axons (Fig. 1B), even though these neurons were only seen in small numbers of planulae, and only sparsely. In contrast, red fluorescence by G-excitation revealed numerous rod-like structures dotted in the ectodermal layer over the whole body (Fig. 1C–E) of all planulae so far observed (more than 30 individuals). These signals resemble the cell body of neurons visualized by immunohistochemistry targeting a neuropeptide...
(Hayward et al. 2001), although direct evidence is missing to identify the cell type of these red fluorescent signals. Roles of the fluorescence still remain in the dark since fluorescent signals are different in other species and also polymorphic (Kenkel et al. 2011). This report first detected clear neuron structures in planula of *Acropora*, and may shed light on the importance of live imaging of fluorescence in corals.

Acknowledgments

We thank Akajima Marine Science Laboratory for sampling supports. This work was supported by Sasakawa Scientific Research Grant from the Japan Science Society to KM, and the Grant-in-Aid for Scientific Research (C) from MEXT Japan to MH.

References


Received: 13 January 2011/Accepted: 7 September 2012
© Japanese Coral Reef Society