Reducing benthic sediment loads on experimental 1 m² plots of algal turf on a coral reef crest (following Goatley and Bellwood 2012) repeatedly attracted a school of Indian goatfish (*Parupeneus indicus*), which settled on the benthos, appearing to rest (Fig. 1). The first goatfish arrived less than 17 minutes after sediment reduction, and while the resting aggregation exhibited high turnover, with individuals resting for 103 ± 23 s (mean ± S.E., n = 20 randomly selected fish), there were 4–15 (mean 6.3 ± 0.8, n = 20) fish resting at any time, for periods of at least 2 hours. This behaviour was observed using static underwater video cameras, in two different plots on non-consecutive days and only where sediment had been removed using a compressed air gun. These resting aggregations have not previously been observed on the Great Barrier Reef.

Where coral reefs are not occupied by sessile invertebrates, they are generally covered in a matrix of algal turfs,
detritus, infauna and sediment, known as the epilithic algal matrix (EAM; see Kramer et al. 2012). It has recently become apparent that high densities of Crustacea living within the EAM (e.g. amphipods, copepods and isopods) represent an important source of nutrition for many reef fishes (Kramer et al. 2012). However, this relationship is not unidirectional. Many arthropod species living in the EAM are obligate or opportunistic parasites of reef fishes and fish may be particularly prone to attack from these parasites when resting on the benthos (Grutter et al. 2011). While it is possible that by reducing abrasive sediments we may have created a favourable resting location, the sediment in this sheltered bay is predominantly fine silt. Some freshwater fishes are known to avoid areas with high parasite loads (e.g. Karvonen et al. 2004) and it appears that reef fishes may display similar behaviours. The reduction of potentially parasitic organisms may have reduced a source of irritation for the resting fishes in our study.

Acknowledgements
We thank P. White, S. Brandl, H. Burgess and the staff of Orpheus Island Research Station for field assistance. This research was funded by the Australian Research Council (DRB).

References

Received: 25 January 2013/Accepted: 17 April 2013
Ⓒ Japanese Coral Reef Society