Origin of andalusite-kyanite-sillimanite aggregates in the Nishidohira pelitic rocks in the southernmost part of the Abukuma Plateau, Northeast Japan, and the P-T path*

Yoshikuni Hiroi**
Eiichi Kobayashi***

Three polymorphs of Al$_2$SiO$_5$, andalusite, kyanite and sillimanite, occur in contact with each other, forming aggregates in a part of the Nishidohira pelitic metamorphics in the Hitachi area of the southernmost Abukuma Plateau. Textural relationships between the three polymorphs suggest that andalusite formed first probably as chiastolitic porphyroblasts, that kyanite and/or sillimanite grew subsequently at the expense of pre-existing andalusite, and that sillimanite continued to form even in the rock matrix thereafter. The andalusite-forming first stage may have been either a contact metamorphic event by unknown plutons or a regional metamorphic event of low-pressure type. The second kyanite and/or sillimanite-producing stage was induced by high-temperature loading, whereas the third sillimanite-forming stage possibly resulted from the contact metamorphism by the Nishidohira gabbroic intrusion exposed near Hase. Well-preserved growth zoning of garnet containing sillimanite inclusions in the andalusite-kyanite-sillimanite-bearing gneisses also indicates the high-temperature compression. The loading may be attributed to the overthrusting of the nearby Hitachi metamorphics onto the Nishidohira metamorphics. Such a P-T path of the Nishidohira metamorphics is similar to that of the Takanuki metamorphics in the central to southern part of the Abukuma Plateau. The widespread occurrence of texturally sector-zoned garnet in pelitic-psammitic rocks and the inferred short duration of high-temperature conditions are also in common to the Nishidohira metamorphics and the Takanuki metamorphics.

Keywords: P-T path, Nishidohira metamorphics, Abukuma Plateau, Three polymorphs of Al$_2$SiO$_5$, Textural sector zoning of garnet, Growth zoning of garnet

I. はじめに
変成岩類のたどった温度－圧力径路（温度－圧力一時間歴路ともいう）を明らかにすることは、造山帯深部における地質過程を動的に捉える上で重要である。我々はこれまで、阿武隈高原の中－南部に分布す
御屋敷・竹貫変成岩、特に竹貫変成岩の特異な温度一圧力経路を明らかにし、阿武隈帯のテクトニクスについて検討してきた（例えば、Hiroi and Kishi, 1989）。阿武隈高原の南端部に位置する日立地域にも比較的まとまった変成岩類が分布している（Fig. 1）。したがって御屋敷・竹貫変成岩との関係については、白亜紀花崗岩類によって隔てられていることもあり、未解決のまま残されている。

日立地域に産出する泥質変成岩の一部には、Al$_2$SiO$_5$鉱物の三つの多形（紅柱石・藍晶石・珪線石）が集合体をなして産出することが報告され、注目されてきた（加納・黒田, 1968; Kano and Kuroda, 1968; 総研阿武隈グループ, 1969; 黒田・加納, 1970; Tagiri, 1971, 1973; 嶋岡・渡辺, 1976; Watanabe and Shimaoka, 1979)。Al$_2$SiO$_5$鉱物の3つの多形を含む岩石は、変成度や変成史などの点で多様・多様な、世界中の多くの地域から報告されてきたが、通例、3つの多形が互いに接していないわけではなく、必ずしも平衡共存ではないことを示唆している（例えば、Hiroi and Kishi, 1989）。すなわち、ある相が安定な時には他の相は準安定あるいは不安定な残晶であったことを示唆する産状が見られるのである。一方、この日立の場合同には、Al$_2$SiO$_5$鉱物の3つの多形が互いに接して出現することがある（Fig. 2）。以下、このような集合体をAKSスポット、これを含む岩石をAKS片麻岩と呼ぶことにするが、すべてのAKSスポットに必ず3つの多形が含まれているわけではない。小論では、AKSスポットの成因を明らかにするために、AKS片麻岩および周辺の泥質岩中の鉱物の組成、組成、組織、組織、組織を詳細に記載し、解析する。また、その解析を通じて、母岩のどだった温度一圧力経路について考察する。さらに、AKS片麻岩が属する“西尾平成
成岩”と竹貫変成岩との対比問題にも言及する。

II. 地質概説

日立変成岩プロパーは南部北上山地に分布する上部古生層に似た岩石を原岩としており、この点は特に先新第三紀東北日本弧の帯構造区分と発達史を考察する際、注目されてきた（例えば、Tagiri, 1973；田切・大倉, 1979；梅村・原, 1985；Otsuki, 1992；概要・永広, 1992；田沢, 1993）。一方、それは御斎所変成岩に対比されることがある（例えば、藤本, 1951）、御斎所変成岩は浮遊物質に乏しく、またその中での変成チャートからジュラ紀の放射性化が見いだされた（Hiroi et al., 1987）等の指摘がある。ところが最近、この対比説は御斎所変成岩中の碎屑性ジルコンの研究から見直されてきた。オーストラリア国立大学の次元

イオン質量分析計（SHRIMP）を用いた分析の結果、御斎所泥灰質片岩中の碎屑性ジルコンの年代値、形態、化学組成等の特徴は、（1）玉藻泥質片麻岩中の碎屑性ジルコンのものとは大きく異なるが、（2）南部北上山地の「氷花花崗岩」中のジルコンのものに似ている、の2点が明らかにされたのである（廣井ら, 1994）。

玉藻変成岩は中－粗粒で、比較的均質な角閃岩ないし黒雲母・角閃石片麻岩を主とする岩石群である。日立地域の北西部に蛇紋岩類を伴いながら小規模に分布しているが（Fig.1）、それは日立変成岩プロパーに貫入した塩基性ないし中性の深成岩起源と考えられている。
西堂平変成岩中の紅柱石-藍晶石-珪線石集合体の成因と温度-圧力経路

III. 西堂平変成岩の地質

西堂平変成岩全体の地質図をFig. 3に、また長谷沢にそったルートマップをFig. 4に示した。西堂平変成岩と日立変成岩プロッパーとは蛇紋岩を挟んで接しているが、両者は構造的にも不調和である。西堂平変成岩が一般に北北西-南南東の走向で東に緩傾斜した構造を示しているのに対して、日立変成岩プロッパーはそれと大きく斜交した構造を示す。蛇紋岩の分布も、西堂平変成岩体の南半部では見かけ上調和的であるが、北半部では斜交している。西堂平変成岩は長谷付近でコートランド岩を主体とするカーンレイ岩体に貫入されている。また、その付近では小規模な花崗岩体やペグマタイト脈、アブライト脈にも貫入されている。ハングレイ岩体についてはTanaka et al. (1982) が詳しく記載しているので、ここでは記述しない。广井・小林（1995）はこのハングレイ岩体中の泥質捕獲岩から残晶状の十字石を見出し、捕獲岩類が付近の西堂平変成岩に由来する可能性が高いため、約5 kbar で700℃程度の接触変成作用を受けていることを明らかにした。

西堂平変成岩は、嶋岡・渡辺（1976）も指摘しているように、見かけ上の下部が粗粒で、泥一砂質岩は片麻岩になっており、ペグマタイトを伴うことが多いが、上半部は細粒の片岩である。わずか数百メートル
の範囲でこのような粒度が大きく変化するのは注目に値する。

西堂平変成岩を構成する岩石は、以下の4種類である（Fig. 3とFig. 4）。

泥一砂質岩：西堂平変成岩の主要構成岩で、黒雲母、斜長石、石英を主要鉱物とし、少量の電気石、ジルコーン、焼灰石、不透明鉱物を伴う。ザクロ石やカリ長石を含むこともまれではない。泥質岩はこれらの鉱物に加えて、様々な量の珪酸鉱石と白云母、まれにはコランダムを含む。泥質岩中の不透明鉱物は石墨、イルメナイト、鉄の硫化物であることが多い。一般に黒雲母に富む優黑質層と石英・長石に富む優白質層による綿状構造が顕著である。強い片理をもち、キンクバンド等の変形組織を示すのが広範に見られるが、塊状でホルンフェルス的なものもまれではない。泥質岩の一部はAKSスポットを含むAKS片麻岩で、Fig. 3とFig. 4に示したように、それは数cmから数十cmの厚さをもつ2ないし3枚の薄層として産出する。

塩基性岩：西堂平変成岩の見かけ上の上部に多産する。主として緑色の普通角閃石と斜長石で構成され、少量のスフェーン、不透明鉱物、焼灰石を伴う。まれにザクロ石、カルミングトン閃石、単斜輝石、緑簾石、褐簾石、緑泥石、電気石、ルチルを含むこともある。石英を伴うこともある。普通角閃石の量は50-90モード%で、多様である。粗粒の普通角閃石結晶の内部にアクリチノ閃石が見られることもある。不透明鉱物の多くはイルメナイトであるが、それはしばしばスフェーンに取り囲まれている。普通角閃石に富む層と斜長石に富む層による綿状構造や片理の顕著なものから均質で塊状のものまである。

石灰珪質岩：泥一砂質岩層や塩基性岩層と1mm以下から数cmまでの厚さの薄層として挟在あるいは互

Fig. 4. Geological sketch map along Hase stream. Note the widespread occurrence of texturally sector-zoned garnet in pelitic-psammitic rocks.
居していることが多い。主に単斜輝石、普通角閃石、斜長石、石英、方解石、スフェーンで構成され、少量の黒雲母、緑泥石、ジルコン、不透明鉱物を伴う。まれにザクロ石、緑簾石、褐簾石、紅柱石を伴うこともある。単斜輝石、普通角閃石、方解石がそれぞれ優勢な板層が縦状構造を形成している場合と、これらが不規則・不均質に混じりあって全体が塊状である場合がある。ごくまれではあるが、ほとんど方解石だけによって構成されたレンズも見られる。

珪質岩：主に波状消光を示す石英によって構成され、少量の斜長石、カリ長石、ザクロ石、黒雲母、電気石を伴う。普通角閃石、カンニングトン閃石、緑簾石、緑泥石、白雲母を含むこともある。ザクロ石や黒雲母等の苦鉱質鉱物はしばしば板層をなして出現する。原岩の組織はほとんど残存していないが、泥一砂質岩と互層しているものはチャート起源の可能性が高い。一方、残斑晶状のカリ長石と石英を含み、比較的長石類に富むものがあるが、それは珪長質な凝灰岩起源と考えられる。

IV. 泥一砂質変成岩の岩石記載

まず、200枚以上のAKS片麻岩の薄片を検観して得られた記載岩石学的事实を列挙する。

(1) AKSスポット全体が空晶石の外型や内部構造の特徴を示すことがある（Fig. 5A, B, Fig. 6A, Fig. 7A, B）。

(2) AKSスポットにはAl₂SiO₅鉱物の3つの多形が存在されており、ほとんどの紅柱石の場合は（Fig. 7A）や白雲母と連続した珪線石だけの場合もある。

(3) AKSスポット中では、紅柱石は著しく波状消光するなど、常に強い変形作用を受けた形跡を示す。藍晶石は同様の変形された形跡を示すことが多い（Fig. 2B, C, D, Fig. 6B, C, D）、紅柱石ほどではない。珪線石は藍晶石と同程度か、それよりもさらに軽度の変形作用を受けた形跡を示すにすぎない。

(4) AKSスポットの中で、紅柱石は巨大な単結晶を伴う
Fig. 6. Photomicrographs of andalusite-kyanite-muscovite-dominating AKS spots.
A, AKS spot showing well-preserved, though highly deformed chiasmatic form in Sp. K90051727 (plane polarized light); B, enlarged photograph of the area in the rectangular in A (plane polarized light); C, andalusite partially replaced by kyanite and muscovite in Sp. K890810612 (plane polarized light); D, enlarged photograph of the area in the rectangular in C (plane polarized light). Note that both andalusite and replacing kyanite are strongly deformed.

るいはそれが変形・細粒化して多結晶集合体になったものとして出現する（Fig. 7A）。亜晶石と珪線石は、紅柱石に比べるとずっと細粒で、様々な程度に紅柱石を置換した自形ないし半自形結晶粒として出現する（Fig. 2B, C, D, Fig. 5C, D, Fig. 6B, C, D, Fig. 7B, C, D）。

(5) AKS スポットの中で、紅柱石を置換するかエクソ体として亜晶石である場合（Fig. 6）と、主として珪線石である場合（Fig. 7）とがある。これら両方が同一試料中で見られることもある。またいずれも西東平成岩体の北端部から南端部まで見られ、特に産出の地域性はない。

(6) 紅柱石は AKS スポット中にだけ出現する。亜晶石は主に AKS スポット中に出現するが、珪線石、十字石、白雲母、電気石などと共にゼクタ状変晶中の中包物として出現することもある（広井・小林, 1995）。これに対して珪線石は、AKS スポット中やゼクタ状変晶中にも出現するが、マトリックス中に多量に出現したいていの共存鉱物と直接に関与している。ただしマトリックス中のものは、通例、ファイブクラ

イトである（Fig. 6A, B）。

(7) ゼクタ状変晶は、しばしば、中心からリムまで珪線石を包有している。

(8) ゼクタ状変晶がスノーボール組織（Fig. 8A）、あるいはセクト構造を示すことがある。まれではあるが、両者が同一試料中で観察されることもある。

AKS 片麻岩以外の泥一砂質岩の 100 枚以上の薄片を観察した結果、このような事項も指摘される。

(9) 紅柱石は AKS 片麻岩以外の泥質岩にも広く出現し、たいいての共存鉱物に直接に接している。

(10) 泥質岩中の白雲母の一部は、定向配列した黒雲母よりもずっと粗粒のボーキライトを直

して出現する。それはしばしば繊維状の珪線石を含む。このような白雲母は、AKS スポット中のものと同様に、アルミナに富む鉱物を置換したものと考えられるが、後退変成時に珪線石を置き換え生じた細粒の黒雲母集合体は明らかに異なる。

(11) 細粒包有物の配列によって示される組織上のセクト構造を示すゼクタ状変晶が広い範囲に
わたって産出する（Fig. 4 と Fig. 8B）。
(12) 変形作用を受けた形跡の乏しい岩石では、原岩の組織や構造が比較的よく保存されている。特に、砂質岩の一部に、塩基性ないし中性の火山岩あるいは半深成岩中の斑晶だったと考えられる。粗粒でoscillatory zoningを示す斜長石粒が見られることは注目に値する（Fig. 8C, D）。

以上の観察事実のうち、加納・黒田（1968）は（1）と（5）や（6）の一部を、総研広域グループ（1969）は（3）を、黒田・加納（1970）は（4）を、Tagiri（1971, 1973）は（1）と（4）を、また鶴岡・渡辺（1976）は（1），（3），および（6）の一部をそれぞれ指摘している。

以上の記載岩石学的観点から、変成ピーク時（最高温度時）に、泥質岩では次の鉱物組合せが安定であったと考えられる。

珪線石＋ザクロ石＋黒雲母＋白雲母＋斜長石＋石英＋電気石＋ジルコン＋イルメナイト＋燐灰石＋石墨＋磁鉄鉱＋鉄線鉱＋カリ長石

これは角閃岩相高温部で、珪線石帯から珪線石－カルサイト長石帯への移化帯に見られるもののである。

V. 鉱物の化学組成

西堂平変成岩の温度－圧力経路を求める上で有用な鉱物、特に泥質変成岩中のザクロ石、黒雲母、斜長石のEPMA分析を行なった。使用した機器は千葉大学理学部地球科学教室の日立電子顕微鏡S-650＋Kevex magic Vである。分析の方法等はMori and Kanehira（1984）によって報告されている。代表的な分析値をTable 1とTable 2に示した。以下に、各鉱物の組成的な特徴を簡単に記述する。

1. ザクロ石（Table 1）

分析したすべてのザクロ石がMnに富んでおり、中心からリムに向かってMn含有量が連続的に減少するような累帯構造（正累帯構造）を示す（Fig. 9）。AKS片麻岩中の、中心部からリムまで珪線石を包有したザクロ石は、中心部で約20%のスペサルティン成分を含んでいるが、他の泥－砂質岩中のザクロ石は中心部でさらに高いスペサルティン成分を含有している。またほとんどのすべてのザクロ石が、特に黒雲母と接したリム部で、FeとMgの含有量およびMg/Fe比が減少し、Mn含有量が増加するような累帯構造（逆累帯構造）を示す（Fig. 9）。長谷沢に露出するハンレイ
岩体近傍の岩中のザクロ石が中心からリムに向かってもっとも大きなMg/Fe比の増加を示す（例えばK90051510, K90051610, K90051612）。

上記の点に加え、AKS片麻岩中のザクロ石とそれ以外の泥一砂質岩中のザクロ石には、それぞれ次のよう
な組成累帯構造の特徴が認められる。

(1) AKS片麻岩中の、中心からリムまで連続して珪線石を包有しているものは、正累帯構造は見
られるが、Mg/Fe比とCaの含有量はほとんど変化しないか、リムに向かってわずかに増加す
るだけである（Table 1とFig. 9A）。それではあるが、リムに向かってCa含有量が減少するよ
うな累帯構造を示すものもある（例えば、K90051612）。

(2) AKS片麻岩中のザクロ石で、珪線石のみならず十字石や亜晶石を不規則に包有するもの
（K89111606; 廣井・小林, 1995）は、リム部ばかりでなく、もっと内部においても逆累帯構造
を示す。

(3) AKS片麻岩以外の泥一砂質変成岩中のザクロ石は、直経が1mm以下の細粒のももの、Mn
含有量ばかりでなくMg/Fe比やCaの含有量に関しても顕著な累帯構造を示す（Fig. 9B）。一
般に、リムに向かってMnとCaの含有量が減
少し、FeとMgの含有量およびMg/Fe比が増
加する。

2. 黒雲母（Table 2）

一般にMnに富んでいる。AKS片麻岩中のものは、
イルメナイトと共存しているにもかかわらず、すべて
3 wt％以下のTiO₂を含むに過ぎない。ところがイルメナイトを含んだややカルシックな砂質岩
K90051510中のものは、約3.2 wt％のTiO₂含有量を
示す。これは後述するように、長谷沢のハシレイ岩体
にももっと近接して産出し、もっとも高温の接触変成
作用を受けたためであろう。ザクロ石に接した黑雲母
とマトリックス中の黒雲母と共を比べると、前者はザクロ石に接した狭い範囲で比較的高いMg/Fe比を示
す。しかし0.1mm程度離れると、両者はほぼ同じ組成
となる。

3. 斜長石（Table 2）

同じAKS片麻岩でも試料によってAn成分含有量
は約17％から約27％の間でばらつくが、個々の試料
Table 1. Representative microprobe analyses of garnet

<table>
<thead>
<tr>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>SiO₂</td>
<td>37.52 ± 0.02</td>
<td>36.77 ± 0.85</td>
<td>37.20 ± 0.99</td>
<td>36.63 ± 3.27</td>
<td>36.34 ± 3.40</td>
<td>37.02 ± 3.68</td>
<td>37.00 ± 3.73</td>
<td>37.28 ± 3.96</td>
<td>37.55 ± 3.70</td>
</tr>
<tr>
<td>FeO*</td>
<td>29.37 ± 0.01</td>
<td>30.91 ± 0.10</td>
<td>31.76 ± 29.75</td>
<td>29.18 ± 29.49</td>
<td>28.07 ± 29.46</td>
<td>28.40 ± 29.73</td>
<td>29.43 ± 31.66</td>
<td>28.88 ± 28.41</td>
<td>20.74 ± 20.74</td>
</tr>
<tr>
<td>MnO</td>
<td>0.23 ± 0.02</td>
<td>6.42 ± 0.33</td>
<td>4.10 ± 7.88</td>
<td>7.95 ± 8.74</td>
<td>10.33</td>
<td>11.34 ± 11.10</td>
<td>11.35 ± 11.98</td>
<td>13.01 ± 12.21</td>
<td>9.34 ± 16.67</td>
</tr>
<tr>
<td>MgO</td>
<td>2.55 ± 0.27</td>
<td>2.70 ± 2.49</td>
<td>2.54 ± 2.34</td>
<td>2.54 ± 2.84</td>
<td>2.40</td>
<td>2.91 ± 2.62</td>
<td>2.65 ± 2.54</td>
<td>2.63 ± 2.43</td>
<td>2.89 ± 0.94</td>
</tr>
<tr>
<td>CaO</td>
<td>1.81 ± 0.19</td>
<td>1.95 ± 1.29</td>
<td>1.73 ± 1.81</td>
<td>1.70 ± 1.71</td>
<td>1.59</td>
<td>1.08 ± 1.47</td>
<td>1.66 ± 1.66</td>
<td>1.37 ± 1.27</td>
<td>1.89 ± 4.46</td>
</tr>
<tr>
<td>Total</td>
<td>100.84 ± 0.01</td>
<td>100.37 ± 0.27</td>
<td>100.51 ± 21.61</td>
<td>99.07 ± 100.31</td>
<td>101.26</td>
<td>99.91 ± 99.41</td>
<td>98.72 ± 100.00</td>
<td>100.02 ± 99.98</td>
<td>101.93 ± 100.54</td>
</tr>
<tr>
<td>＊minimum Mn content</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>**total Fe</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Note that all the analyzed garners in the AKS gneisses contain sillimanite inclusions throughout.

Table 2. Representative microprobe analyses of biotite, plagioclase and ilmenite

<table>
<thead>
<tr>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>SiO₂</td>
<td>34.89 ± 0.02</td>
<td>34.43 ± 0.25</td>
<td>35.14 ± 34.68</td>
<td>34.82 ± 36.23</td>
<td>61.38 ± 61.30</td>
<td>60.70 ± 62.89</td>
<td>61.32 ± 61.88</td>
<td>61.15 ± 46.78</td>
<td>0.00 ± 0.00</td>
</tr>
<tr>
<td>TiO₂</td>
<td>2.17 ± 0.02</td>
<td>2.25 ± 0.25</td>
<td>2.51 ± 2.71</td>
<td>2.99 ± 3.22</td>
<td>0.00 ± 0.00</td>
</tr>
<tr>
<td>Al₂O₃</td>
<td>19.40 ± 0.02</td>
<td>19.67 ± 19.72</td>
<td>19.36 ± 18.53</td>
<td>19.25 ± 24.32</td>
<td>24.45 ± 24.44</td>
<td>22.25 ± 23.73</td>
<td>23.32 ± 23.36</td>
<td>25.06 ± 33.86</td>
<td>0.00 ± 0.00</td>
</tr>
<tr>
<td>FeO*</td>
<td>18.34 ± 0.22</td>
<td>19.20 ± 17.44</td>
<td>17.70 ± 18.15</td>
<td>16.83 ± 0.00</td>
<td>0.00 ± 0.00</td>
</tr>
<tr>
<td>MnO</td>
<td>0.22 ± 0.02</td>
<td>0.17 ± 0.24</td>
<td>0.24 ± 0.32</td>
<td>0.00 ± 0.00</td>
</tr>
<tr>
<td>MgO</td>
<td>9.58 ± 0.13</td>
<td>9.44 ± 9.62</td>
<td>9.62 ± 9.30</td>
<td>9.72 ± 0.00</td>
<td>0.00 ± 0.00</td>
</tr>
<tr>
<td>CaO</td>
<td>0.00 ± 0.00</td>
</tr>
<tr>
<td>Na₂O</td>
<td>10.21 ± 10.15</td>
<td>9.96 ± 9.76</td>
<td>9.94 ± 10.01</td>
<td>0.12 ± 0.17</td>
<td>0.12 ± 0.14</td>
<td>0.20 ± 0.10</td>
<td>0.20 ± 0.11</td>
<td>0.00 ± 0.00</td>
<td>0.00 ± 0.00</td>
</tr>
<tr>
<td>K₂O</td>
<td>95.41 ± 95.00</td>
<td>95.97 ± 94.97</td>
<td>95.37 ± 95.98</td>
<td>99.98 ± 99.30</td>
<td>98.39 ± 99.03</td>
<td>96.16 ± 93.57</td>
<td>95.26 ± 95.84</td>
<td>101.83 ± 101.31</td>
<td></td>
</tr>
<tr>
<td>Total</td>
<td>100.00 ± 100.00</td>
</tr>
<tr>
<td>＊cationsic part of devalent grain showing oscillatory zoning</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>**total Fe</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

VI. 変成作用の温度・圧力条件

ザクロ石－黒雲母を含む地質（Hodges and Spear, 1982）とザクロ石－珪砂岩－斜長石－石英圧力計（GASP）（Newton and Haselton, 1981）の組合せによって、温度・圧力値を求める。その結果を Fig. 10 に示した。使用した鉱物の組成は、ザクロ石の場合、正長岩を圧力の場を含む内部で、もっとも低い Mn 含量のもの（Table 1 で、min）
Mn としたもの）である。黒雲母の場合は、サクロ石に近接してはいるが直接には接していない比較的粗粒の結晶の内部、斜長石の場合は、サクロ石に近接した比較的細粒の結晶の分析値である。これらの組成が変成作用からの段階で得られたのかは必ずしも明確ではなくな、したがって得られた温度・圧力値が何を表すのかは不明である。しかし後に議論にふれるように、得られた値は変成ピーク時に近い時期のものと考えられ、約600°Cで5kbarである。これと長谷沢のハンレイ岩体中の泥質捕獲岩に対して記録された圧、温度は大きく異なるが圧力はほぼ同じである。この点は、黒井・小林（1995）が指摘したように、西堂平変成岩の変成史を考察する上で重要である。

VII. 考察

先に詳しく記述したAKS片麻岩中のAl2SiO5鉱物の3つの多形等の産状から、それらの多形が互いに平衡に近い条件で成長した、すなわち三重点近傍の温度・圧力条件で同時に形成された、とは考えにくい。むしろ、下記の現象が順次進行したものと推定される。

（1）空晶石（有機物によるセクト構造を示す紅柱石変成岩）が形成された。

（2）藍晶石や珪線石あるいは長方形が粗粒の白雲母とともに、既存の空晶石を部分的に完全に置換した。この置換の前あるいはほぼ同期に激しい変形作用があった。

（3）珪線石がAKSスポット内ばかりでなく、マトリックスにも多量に形成された。

（1）は低圧条件下での変成作用（Fig. 10中の1と2の間の矢印）で、限られた泥質岩、すなわちAKS片麻岩中に特に粗粒の紅柱石斑状変成岩が形成されたということである。（2）は変成条件が紅柱石の安定領域から珪線石の安定領域を経て、藍晶石と珪線石との間の変成帯に近い変成作用を示すものと考えられ、比較的高温条件下での加圧現象である（Fig. 10中の2と3の間の矢印）。これに関連して注目されるのが、黒井・小林（1995）の記載したAKS片麻岩K8911606中のサクロ石斑状変成岩である。このサクロ石斑状変成岩は十字石の他に蓝晶石、珪線石、白雲母等を不規則に含もしており、藍晶石と珪線石との間の変成帯に近い変成帯に近い条件で、変成帯構造ができるほど急速に（坂野・地井、1976）成長したことを反映しているのである。またその生成反応は、このような圧力変化に比較的敏感な連続反応だったと考えられる。

十字石+黒雲母+石英=サクロ石+白雲母

（3）は加熱現象であり（Fig. 10中の3と4の間の矢印）、多様な珪線石生成反応が進むようになったことを反映しているのである。黒井・小林（1995）は西堂平変成岩に貫入した長谷沢ハンレイ岩体による加熱接触変成作用の存在を明らかにしているが、この加熱もハンレイ岩体による接触変成作用である可能性が低い。なぜなら、ハンレイ岩体中の泥質捕獲岩とAKS片麻岩に対して記録された圧力値はほぼ同じであり、またわずかではあるが、AKS片麻岩に記録された温度値はハンレイ岩体に近いほど高くなる傾向が認められる（図3と図10参照）。

Fig. 9. Compositional profiles of garnet porphyroblasts in Nishidohira pelitic and psammitic metamorphic rocks.
A, garnet containing sillimanite inclusions throughout the grain in AKS gneiss (Sp. K89080918); B, fine-grained and texturally sector-zoned garnet in psammitic rock (Sp. K90051510). Note the well-preserved growth zoning in spite of the small grain size and high metamorphic grade.
ところで黒田・加納（1970）やTagiri（1971, 1973）も、AKS片麻岩中の各鉱物の産状からAl₃SiO₈鉱物の3つの多形の成長の前後関係を推察している。黒田・加納（1970）は紅柱石と堇青石が平衡共存した後で珪線石が成長した可能性を指摘し、Tagiri（1971, 1973）は我々のものとほぼ同様の鉱物の生成順を推定しているが、いずれも三重点付近の変成条件があり、主張している。この点が我々の解釈と大きく異なる。しかしAl₂SiO₅鉱物の産状だけに基づく議論には限界がある。また、いずれの解釈が正しいとして、その現象が連続的に進行したのか、それと大きな時間間隔を伴ったものだったのかという疑問には答えられない。したがって別の手法による解析が必要となる。ところで我々のものを含むすべての解釈に共通しているのは、変成ピーク時に安定なAl₂SiO₅鉱物は珪線石だった、ということである。それでは、それに対し前安定あるいは不安定になった絶縁基や紅柱石が残存したのはなぜであろうか？ これはAl₂SiO₅鉱物中の微量成分の効果や相転移のカイアリティックスの問題であり、未だに不明な点が多いが、高温条件の連続時間が重要因である。それは、次に議論するザクロ石の組成的な成長累帯構造の保存にも重要である。

ザクロ石の組成的な成長累帯構造は、低〜中変成度の変成岩の温度〜圧力条件を求める時によく利用される（例えば、Hiroi, 1983; Spear and Selverstone, 1983; Spear, 1991a）。それは、成長しつつあるザクロ石の表面だけが周囲と化学平衡に近い状態を保ち、内部は外界の変化から切り離されて凍結されることによって形成されると考えられる。しかし温度が十分に高くなり、高温条件の連続時間が長くなると、ザクロ石结晶内部の元素拡散が進み、成長累帯構造はさらにに変化され、ついには均質化する。Tracy (1982) は経験的に、変成度が珪線石〜カリ長石帯に達するとザクロ石の均質化が急激に進む。そして、再変成変成岩では、温度条件時には局所的な応応（特に、直接に接している鉱物間での元素の交換応応）が起こり、組織を変化させる可能性が高い（例えば、Spea, 1991b）。したがって、観察される成長累帯構造が成長累帯構造かどうか、成長累帯構造であっても本来のものからどれほど変化されているのか、等の問題があり、その取り扱いに注意が必要である。西堂変成変成岩は、上述したように、珪線石〜カリ長石帯付近の変成条件に達しており、ザクロ石はほぼ均質化していてもよいはずである。しかし実際にはFig. 9Bに示したように、もっとも変温の値が見積られた砂岩状岩K90051510中の、直径1mm以下の中粒のザクロ石にも低変成変成岩のザクロ石に見られるような顕著な成長累帯構造が見られる。したがって西堂変成変成岩では高温条件の連続時間が短く、そのために成長累帯構造はより均質化されたものと考えられる。Hiroi and Ellis（1994）や両井ら（1995）は、ザクロ石中のFe, Mg, Mn, Caの4元素の中では特にCaの拡散が速く、結晶内拡散による成長累帯構造の変化を受けにくいことを明らかにしている。ここでもCaに関する組成変化は圧力変化に関する重要な情報源となっているが、その信頼性は高いと考えられる。Fig. 9Aに示したK90051510中のザクロ石の成長累帯構造に基づく温度〜圧力条件をFig. 10のほぼ等温等圧を示す2から3への矢印である。このザクロ石には中心からリムまでの連続的に珪線石が包まれており、また中心からリムに向かってグロッシナー成分含有量が1.9 モル% 増加するが、その間Mg/Fe比はほとんど変化しない。これらのことから、珪線石の安定領域内での等温的な加圧が示されるのである。ただし、図示した約2 kbarの圧力増加量は最少値である。なぜなら、加压前後の圧力を求める際に、Table 2中のAn = 26.3% と同じ斜長石の組成を用いているからである。圧力が増加してザクロ石がCaに富んでゆけば、共
存する斜長石は逆にCaに乏しくなるはずで、相対的にCaに乏しいザクロ石の中心部が形成された時の斜長石はもっとAn成分に富んでいたはずである。比較的粗粒の斜長石核の内部がリム部に比べてやや高いAn成分含有量を示すのは、このためかもしれない。ただしこの議論にも次のような前提がある。すなわち、この岩はザクロ石、斜長石、焼灰石以外のCa亜鉛を含まず、Ca交代作用を受けておらず、また部分融解もしかなかった。つまりCaはザクロ石と斜長石との間だけで次の反応によって取りられた、ということである。

灰長石＝グロッシュラー+珪線石+石英

以上のようにザクロ石の成長畳帯構造の解析結果、Al₂SiO₅鉱物の産状に基づくいくつかの解釈の中で、我々のものに調和的である。

ところでAKS片麻岩の中ではK90051610とK90051612の中のザクロ石が、リムに向かってもっとも大きなMg/Fe比の増加を示し、ザクロ石の成長時にもっとも大きな温度上昇があったことを示している。これらの試料は長谷川のハサンレイ岩体に最も近く位置にあり、それによって加熱されたことを示しているのである。さらにK90051612では、Mg/Fe比の増加に伴ってCa含有量が減少するのが見られる。これは加熱がむしろ等圧であったことを示している。そうするとAKS片麻岩中のザクロ石には等温加圧時に成長したものと等温加圧後に成長したものとがあることになる。一方、これらのザクロ石は、成長が不連続的であったことを示す特徴は見られない。むしろスノーボール組織や細粒包有物によるセクト構造は、変形作用とほぼ同時期の連続的で急激な結晶成長を示唆している。したがって、比較的高温条件下での等温加圧や貫入したハサンレイ体に伴う加熱は、白亜紀のある時期に発生した一連で短期間の出来事だったのだろう。

VIII. おわりに

小論では泥質岩に、特にAKS片麻岩中の鉱物の産状や組成、化学組成をもとに、AKSスプライトの成因を考察し、またそれを通じて西宮変成岩の温度・圧力条件を論じてきた。西宮変成岩と日立変成岩プローブとの本来的な関係や現在の関係に至るまでの経過を明らかにするためには、日立変成岩プローブの温度・圧力条件も明らかにする必要がある。廣井・小林（1995）は、玉簾変成岩に接して産出し、残晶状の十字石を含む泥質岩を記載し、その岩盤には低圧条件下での温度上昇による再結晶作用の形跡は見られないが、小論で明らかにしたような高温加圧やその逆の現象を示唆するような鉱物組成は見られないとしている。しかしもっと広範な岩石の吟味が必要である。一方、上述したように、西宮変成岩と竹貫変成岩とは共通する新土の特徴が明かにされたが、これが直ちに両者の「地層としての対比」ということはならないであろう。地層としての対比に、SHRIMPを用いたジルコンの年代測定などによって原岩の形成年代等を確定する必要がある。竹貫変成岩については、すぐにその方法によって、アジア大陸東縁部に形成されたジュラ紀付加体の変成したものであることが明らかにされている（廣井, 1993; 廣井ら, 1992, 1994).

謝辞 本研究を行うにあたり、佐藤和彦、後藤淳一、今関理博の各氏には種々お世話になった。これらの方々に心よりお礼申し上げる。また二人の解読者から穏やかな改訂のコメントをいただけると、原稿を改善することができた。深謝する次第である。この研究に要した費用の一部には、文部省の科学研究助成費（1460061, 4804067, 5452085, 6302031, 6302029）を使用したことを明記し、関係各位に感謝の意を表したい。

引用文献

坂井昇平，地井三郎（1976），Garnetの帯状構造の成因，岩盤特異号1号，283-299.
藤本治義（1925），日立鈴山付近の片岩系に伴われる石灰岩の層構造，地学雑，36, 559-561.
藤本治義（1951），日本地方地質誌，関東地方，345 pp.
西川平凝灰岩中の紅柱石—ケイサイト—珪線石集合体の成因と温度—圧力条件

測定とテクトニクス，日本地域学会第101年学術大会講演要旨集，177．

加納 博，黒田吉益（1968），阿武隈高原の変成作用—とくに紅柱石—ケイサイト—珪線石の共存に関して，総合研究変成帯形成史の研究論集『変成帯』，No. 5, 12-16.

加納 博，黒田吉益, 宇留野勝敏, 濱木輝一，原 郁夫，鰐澤律史，丸山孝彦，梅村篤（1977），阿武隈変成帯形成史一変成作用の立場から. 秀 敏（編）三波川帯，広島大学出版研究会，289-296.

河野義礼，植田良夫（1965），本邦火成岩のK-Ar dating (III)—阿武隈山地の花崗岩類—I，岩誌，54, 162-172.

黒田吉益（1951），日立地方の所謂圧縮性花崗岩及び三角板片麻岩について—阿武隈高原の地質学的岩学研究（その1）—，地質誌，57, 135-142.

黒田吉益，加納 博（1970），天然における紅柱石—ケイサイト—珪線石の平衡関係について，礦物誌，9, 497-506.

大槻隆四郎, 永広昌之 (1992), 東北日本の大規模な横ずれ断層系と日本の大体構造の成立, 地質雑, 98, 1097-1112.

柴岡博, 渡辺昭 (1976), 先安部族造山期西堂平変成岩類の研究—その1, 岩質とその分布状態, 地質雑, 82, 531-542.

総研阿武隈グループ (1969), 阿武隈高原の複成変作用, 地質学論集, 4号, 83-98.

杉山新平 (1972), 日立地域より種子岩化石の発見, 地球科学, 26, 173-174.

田切美智雄, 大倉智恵子 (1979), 日立および鶴見山地域の変火山岩類, 特にそれらの火成活動場と層序構造縁について, 地質雑, 85, 679-689.

渡辺順, 柴岡博 (1977), 先安部族造山期西堂平変成岩類の研究—その2, ペロファブリックパターンの解釈, 地質雑, 83, 491-507.

