Supplementary Materials

Calculation steps of CO_{2} and CH_{4} concentrations. The concentration values are taken from Tables 2 and 3.

$$
\begin{align*}
& V_{t}= V_{1} * \frac{T_{0}}{T_{\mathrm{gas}}} * \frac{P_{i}-P_{\mathrm{H}_{2} \mathrm{O}}}{P_{0}}+V_{\mathrm{H}_{2} \mathrm{O}} * \frac{P_{i}-P_{\mathrm{H}_{2} \mathrm{O}}}{P_{0}} \\
& *\left(\% \mathrm{CO}_{2} * S_{\mathrm{CO}_{2}}+\% \mathrm{CH}_{4} * S_{\mathrm{CH}_{4}}\right) \tag{S.1}
\end{align*}
$$

where the first term (S.1a) calculates the volume of the dissolved gas corrected for the water vapour pressure V and the second (S .1 b) computes the volume of the remaining dissolved gas in separated water V_{r} :
$V=V_{1} * \frac{T_{0}}{T_{\mathrm{gas}}} * \frac{P_{i}-P_{\mathrm{H}_{2} \mathrm{O}}}{P_{0}}$
$V_{r}=V_{\mathrm{H}_{2} \mathrm{O}} * \frac{P_{i}-P_{\mathrm{H}_{2} \mathrm{O}}}{P_{0}} *\left(\% \mathrm{CO}_{2} * S_{\mathrm{CO}_{2}}+\% \mathrm{CH}_{4} * S_{\mathrm{CH}_{4}}\right)$.
$P_{\mathrm{H} 2 \mathrm{O}}, S_{\mathrm{CO} 2}$ and $S_{\mathrm{CH} 4}$ are obtained using the following equations:
$P_{\mathrm{H}_{2} \mathrm{O}}=9 * 10^{-4} T_{\mathrm{H}_{2} \mathrm{O}}^{3}-0.0107 T_{\mathrm{H}_{2} \mathrm{O}}^{2}+0.7316 T_{\mathrm{H}_{2} \mathrm{O}}+6.11$
$S_{\mathrm{CO}_{2}}=6 * 10^{-4} T_{\mathrm{H}_{2} \mathrm{O}}^{2}-0.0493 T_{\mathrm{H}_{2} \mathrm{O}}+1.6948$
$S_{\mathrm{CH}_{4}}=10^{-5} T_{\mathrm{H}_{2} \mathrm{O}}^{2}-0.0013 T_{\mathrm{H}_{2} \mathrm{O}}+0.0568$.

Parameters used in (S.1) to (S.4) are as follow:

- $\quad V_{t}$ is the total volume STP representing gas/water ratio at a given sampled depth (L);
- $\quad V_{\mathrm{H} 2 \mathrm{O}}$ is the volume of liquid phase collected in the separator (L);
- $\quad V_{1}$ is the volume of gas obtained as difference between initial and final index readings of the gas flow-meter and volume $V_{\mathrm{H} 2 \mathrm{O}}$ of water in the separator $\left(\Delta\right.$ index $\left.-V_{\mathrm{H} 2 \mathrm{O}}\right)(\mathrm{L})$; - $\quad V$ is the volume STP obtained after correcting $V_{1}(\mathrm{~L})$; - $\quad V_{r}$ is the residual gas remaining in water in equilibrium with the internal pressure of the measuring line (Pi) corrected for water vapour contribution (L);
- $T_{0}=273(\mathrm{~K})$;
- $T_{\text {gas }}=$ gas temperature given by the gas meter inbuilt thermometer (K);
- $\quad P_{0}=$ atmospheric pressure at sea level (1013 hPa);
- $\quad P_{i}$ is the internal pressure of the measuring line calcu-
lated as: $P_{i}=P_{a}+P_{m}(\mathrm{hPa})$ where, P_{m} is the pressure reading given by the manometer and P_{a} is the barometric pressure $(\sim 887.64 \mathrm{hPa})$ at the level of the lakes (ca. 1100 m asl.);
- $\quad P_{\mathrm{H} 2 \mathrm{O}}$ is the water vapour pressure in the system calculated following equation (2) (Wilhelm et al., 1976). Temperature (${ }^{\circ} \mathrm{C}$) of water measured by a hand thermometer at the outlet of the FDP;
- $S_{\mathrm{CO} 2}$ is carbon dioxide solubility calculated following equation (3) (Weiss, 1974; Wilhelm et al., 1976); water temperatures $\left({ }^{\circ} \mathrm{C}\right)$ was measured by a hand thermometer at the outlet of the FDP $\left(\mathrm{cm}^{3} / \mathrm{cm}^{3}\right)$;
- $S_{\mathrm{CH} 4}$ is methane solubility calculated following equation (4) (Wilhelm et al., 1976); water temperatures (${ }^{\circ} \mathrm{C}$) was measured by a hand thermometer at the outlet of the FDP $\left(\mathrm{cm}^{3} / \mathrm{cm}^{3}\right)$.

Once V_{t} is obtained, the concentrations of the dissolved CO_{2} and CH_{4} are calculated using (S.1) and (S.2) where $\% \mathrm{CO}_{2}$ and $\% \mathrm{CH}_{4}$ are their volume concentrations in mole $\%$, assuming water density is $1 \mathrm{~kg} / \mathrm{L}$.

$$
\begin{align*}
& {\left[\mathrm{CO}_{2}\right]=\frac{1}{V_{\mathrm{H}_{2} \mathrm{O}}}\left[V_{t} * \frac{\% \mathrm{CO}_{2}}{22.4}\right] * 1000(\mu \mathrm{~mol} / \mathrm{kg})} \tag{S.5}\\
& {\left[\mathrm{CO}_{2}\right]=\frac{1}{V_{\mathrm{H}_{2} \mathrm{O}}}\left[V_{t} * \frac{\% \mathrm{CH}_{4}}{22.4}\right] * 1000(\mu \mathrm{~mol} / \mathrm{kg})}
\end{align*}
$$

Calculation of partial pressures using Henry law's constant

$$
\begin{equation*}
P_{i}=K_{H i} * X_{i} \tag{S.7}
\end{equation*}
$$

Where

$$
\begin{align*}
& K_{H}\left(\mathrm{CH}_{4}\right) \\
& =10^{\left(4.37103+0.01096 t-8.49689 * 10^{-5} t^{2}+2.09817 * 10^{-7} t^{3}-1.92689 * 10^{-10} t^{4}\right)} \tag{S.7a}
\end{align*}
$$

$K_{H}\left(\mathrm{CO}_{2}\right)$
$=10^{\left(2.89612+0.01502 t-8.80542 * 10^{-5} t^{2}+2.07454 * 10^{-7} t^{3}-1.87966 * 10^{-10} t^{4}\right)}$
in atm/mole fraction (Taran, 2005).
The mole fraction X :

$$
\begin{equation*}
X=C / 55.51 \tag{S.7c}
\end{equation*}
$$

where C is gas concentration in $\mathrm{mol} / \mathrm{kg}$.

