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Samples 

We analyzed the samples collected from a silica vein (96NP452) that intrudes basaltic 

greenstones of the ~3.5 Ga Dresser Formation in the North Pole area of Western Australia. The 

sampling locality of the silica vein was shown in previous study (Igisu et al., 2018). Detailed 

descriptions of the localities and samples can be found in the works of Ueno et al. (2001, 2004, 

2006). The ~3.5 Ga Dresser Formation is one of Earth’s oldest records of seafloor hydrothermal 

deposits, where prominent silica-barite veins containing carbonaceous matter ubiquitously 

penetrate pillowed basaltic greenstones (Ueno et al., 2004; Van Kranendonk, 2006; Van 

Kranendonk et al., 2008). Carbonaceous matter present in the silica veins provides an important 

means to understanding how organic matter was synthesized in Earth’s early hydrothermal 

systems. The occurrence of biological activity in the Dresser Formation has been inferred from 

observations of putative stromatolites (Walter, 1980; Van Kranendonk, 2006; Van Kranendonk 

et al., 2008), microbially induced sedimentary structures (Noffke et al., 2013), and putative 

microfossils (Ueno et al., 2001), as well as geochemical signatures in silica-barite veins, 

including 13C-depleted carbonaceous matter and methane (Ueno et al., 2001, 2004, 2006; 

Glikson et al., 2008; Morag et al., 2016), 34S-depleted pyrite with characteristic ∆33S values 

(Ueno et al., 2008; Shen et al., 2009), and the molecular characteristics of carbonaceous matter 

(Derenne et al., 2008; Duda et al., 2018; Igisu et al., 2018). The results of previous geochemical 

analyses suggest the possible presence of prokaryotic communities in ancient hydrothermal 



ecosystems; however, abiotic origins have also been proposed for the putative morphological 

fossils and organic matter (Lowe, 1994; McCollom et al., 1999; McCollom and Seewald, 2006).  

Petrographic investigation of the thin section indicated that the silica vein is mainly 

composed of microcrystalline quartz (< 10 µm), carbonaceous matter, sulfides, and carbonates. 

We selected five carbonaceous clots in petrographic thin section of the silica vein that have 

been previously analyzed by Raman and Fourier transform infrared (FTIR) 

microspectroscopies (Igisu et al., 2018; #01, #02, #13, #15, and #31 in Figure 1). Native Fe-Ni 

minerals and other preferred catalysts for Fischer–Tropsch-type (FTT) reactions were not 

observed in the studied thin section (Igisu et al., 2018) or in previously reported samples (Ueno 

et al., 2006). The five carbonaceous clots show different infrared (IR) features of aliphatic 

CH3/CH2 groups (absorbance ratios of aliphatic CH3/CH2 groups = 0.22–0.51 for #01, #02, #13 

and #15: Igisu et al., 2018; and no signals aliphatic CH3/CH2 groups for #31). 

 

Raman microspectroscopy 

A laser Raman microspectrometer (RAMANtouch, nanophoton) was used to identify 

the presence of carbonaceous matter and examine its graphitization degree. The excitation laser 

was a green laser with a wavelength of 532 nm. The carbonaceous clots were analyzed using 

the X–Z mapping mode with an exposure time of 5 s and one accumulation. Raman spectra for 

wavenumbers in the range of ~2670–110 cm−1 were acquired with a 600 grooves/mm grating. 

The spot size was < 1 μm using a 100 × objective lens with numerical aperture of 0.9. The 

incident laser power density was ~1 × 105 W/cm2, and the final power on the sample surface 

was estimated to be ~0.4 mW. Prior to sample analysis, wavenumber calibration was performed 

by comparing the Raman spectra with a standard silicon spectrum (520 cm−1). 

Raman spectroscopy has been used to obtain a metamorphic grade indicator of 

geological samples containing carbonaceous matter (Yui et al., 1996; Beyssac et al., 2002; 

Kouketsu et al., 2014). Several indicators have been used to estimate peak metamorphic 



temperatures using Raman spectral parameters: intensity ratio, area ratio, and full width at half 

maximum (FWHM) of the ~1580 cm−1 (graphite, G) and ~1350 cm−1 (disordered, D) bands. 

Following Kouketsu et al. (2014), we selected a five-band model: D1 band (~1350 cm−1), D2 

band (~1620 cm−1), D3 band (~1510 cm−1), D4 band (~1245 cm−1), and G band (~1580 cm−1). 

Using the FWHM of the D1 and D2 bands (FWHM-D1 and FWHM-D2, respectively), the 

maturation temperature of carbonaceous matter was estimated (Kouketsu et al., 2014): 

T (°C) = −2.15 (FWHM-D1) + 478   (1) 

T (°C) = −6.78 (FWHM-D2) + 535   (2) 

The error in equation (1) is approximately ± 30 °C (Kouketsu et al., 2014). The FWHM-

D1 and FWHM-D2 values are 65 ± 3 and 33 ± 5, respectively. The Raman spectra of 

carbonaceous clots are equivalent to those of CM from lower greenschist facies metasediments 

(Yui et al., 1996; Kouketsu et al., 2014), consistent with the metamorphic grade of basaltic 

greenstones surrounding the silica veins (below greenschist facies, < 350 °C; Kitajima et al., 

2001; Ueno et al., 2001, 2004). We used equation (1) to calculate the maturation temperature 

of carbonaceous clots in order to compare the data with the previous spectral data of Archean 

samples (Alleon et al., 2018, 2019, 2021). To estimate the maturation temperature of 

carbonaceous clots, we selected the spectral data of only the carbonaceous clots embedded 

within rocks below the surface of the thin section to avoid the effect of polishing, which can 

induce deformation of carbonaceous matter during sample preparation and possibly cause 

artificial modification of Raman spectroscopic feature (Pasteris, 1989). The Raman spectral 

data were processed using the PeakFit v.4.12 software (SeaSolve Software Inc.). 

 

Focused ion beam scanning electron microscopy 

STXM analysis requires ~100-nm-thick sections to transmit soft X-rays for chemical 

analysis. Therefore, approximately 100-nm-thick sections were extracted from five 

carbonaceous clots in the silica vein using a focused ion beam scanning electron microscope 



(FIB-SEM, Helios G4 UX FEI). 

 

Scanning transmission X-ray microscopy and X-ray absorption near-edge structure 

spectroscopy 

Carbon and nitrogen X-ray absorption near-edge structure spectroscopy (C- and N-

XANES) were performed using STXM at BL-19A of the Photon Factory at High Energy 

Accelerator Research Organization (KEK) (Takeichi et al., 2014, 2016). The carbon map was 

obtained by acquiring the pairs of images below and on the carbon K-edge, at 280 and 290 eV, 

respectively, for each pixel. The energy steps (ΔE) for C-XANES spectra differed among FIB 

foils (Table S1). For N-XANES, ΔE was 0.2 eV in the 398–406 eV region, 0.3 eV in the 406–

409.9 eV, and 0.5 eV in the 390–398 eV region. Stack measurements were performed with a 

dwell time of 2 or 5 ms per pixel for C-XANES analyses and 2 or 10 ms per pixel for N-XANES 

analyses. STXM-XANES data analysis was performed using the aXis2000 software 

(http://unicorn.mcmaster.ca/aXis2000.html). 

The FIB foil extracted from carbonaceous clot #13 did not contain any black aggregates 

in its optical microscopic images, nor show any absorption peaks in its C-XANES spectra. This 

may be because a CM-free part of carbonaceous clot #13 was coincidentally extracted, and thus 

the results of carbonaceous clot #13 were excluded from the discussion. 

 

Table S1. Energy steps for carbon X-ray absorption near-edge structure spectroscopy (C-

XANES) 

Foil# Range [eV] Energy step [eV] 

#01, #02 280–284.5 0.5 

 284.5–292 0.1 

 292–300 0.5 

 300–320 1 

#09, #31 280–284 0.5 

http://unicorn.mcmaster.ca/aXis2000.html


 284–291.5 0.15 

 291.5–299 0.3 

 299–320 0.5 

#15 280–284.5 0.5 

 284.5–292 0.1 

 292–295 0.2 

 295–310 1 
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