中部日本東濃地方，土岐花崗岩中の割れ目解析*
Fracture analysis of the Toki Granite in the Tono district, central Japan*

Abstract

Macroscopic fractures developed in the Late Cretaceous Toki Granite in the Tono district, central Japan, were analyzed in the field and under the microscope. The fractures are characterized by their morphology (open or closed, brittle and/or plastic deformation) and filled with several kinds of materials. The fracture-filling materials are authigenic minerals (iron-oxide, sericite, quartz, chlorite and epidote) and/or pulverized grains derived from the host granite (quartz, feldspar, biotite, etc.). Sericite, quartz, chlorite and epidote are hydrothermal minerals related to the activity of granite magma. Iron-oxide, however, is considered to have been formed in a later stage of fracture filling on the basis of the occurrence.

All the fractures are primarily formed as open and/or shear fractures by brittle failure, although some of them also show microstructures caused by plastic deformation, such as dynamically recrystallized quartz. This type of fractures are interpreted to have originated from brittle fractures which were subsequently hydrolytically weakened in the presence of hydrothermal solution and deformed physically.

Key words: Tono district, Toki Granite, fracture, fracture filling, plastic deformation, brittle failure

はじめに

割れ目は野外においてさまざまな形態を示し、時に大小の地形を形成する要因となることもある。また割れ目は鉱床を形成する流体の通路ともなるため、鉱床地質学的にも重要な意味を持っている。割れ目の分布や密度は岩盤の強度に影響を与えるため、巨大構造物（高速道路・トンネル・ダムなど）の建設において、応用地質学の分野からもその地質的成因などを大変重要視されている。また割れ目は地下水の通路になるため、割れ目研究は腐食の（地層）処理の問題にも大きく貢献すると考えられている（Pollard and Aydin, 1988）。

割れ目の研究は古くからさまざまな種類の岩石において、主に野外における観察に基づいて行われてきたが、最近では実験的・理論的考察と、それらとの対比も盛んに行われてきている（詳細については、Pollard and Aydin, 1988 を参照）。中でも花崗岩は他の岩種に比べて等方的であるので割れ目研究の対象にされることが多く、古志理論的復元などを目的とした研究が多数行われてきた（例えば、Rehrig and Heidrick, 1972 ; 橋田, 1969）。杉山 (1966) は花崗岩体の地質構造として割れ目系に注目した研究を行っている。また最近では放射性廃棄物の（地層）処分を目的とした割れ目特性（形態、密度、充填物など）調査が、岩盤中の物質移動および地下水流動機構を含めて精要的に行われている（吉田ほか, 1989 ; 尾代ほか, 1992など）。

本論文では土岐花崗岩の中の割れ目について、野外において割れ目の形態・走向傾斜に注目して観察を行った。さらに野外で観察した割れ目をコアドリルで採取し、その薄片を鏡下で観察した上で、野外・鏡下の両視点から割れ目および充填物の形態・特徴を詳細に記載した。また割れ目および割れ目充填物の形成環境についても考察を述べる。花崗岩中の肉眼で観察できるサイズの割れ目を自然のままサンプリングするのが難しい。そのためこのようなサンプルを鏡下で観察した例は少なく、土岐花崗岩については過去に例がない。このような研究は上記のような割れ目研究の最も基礎的なデータとして活用されることが期待できる。

地質概略

土岐花崗岩は白亜紀後期に美濃帯の中生界に貫入した岩体で、東西約 12 km、南北約 14 km の広がりを持つ（Fig. 1）。その大部分は細粒粘板（部分的に斑状を呈する）が中生界花崗岩であるが、一部は角閃石花崗岩に変化する（石原・香木, 1969）。長石類は赤みがかかった、白晶して錆化しているもの
多い。斑層および周辺を除けば、肉眼および鏡下で観察される変位変形構造はほとんど存在していない。Shibata and Ishihara (1979) は23.3±3.9 Ma の Rb-Sr 年代を、Suzuki and Adachi (1998) は 88.3±1.8 Ma の CHIME 年代を報告している。また変質带構成岩類と土岐花崗岩はどちらも中新統の瑞浪層群に不整合に覆われており、さらにその上を鮮新統の瀬戸層群が不整合に覆っている (魚飯川、1974 など)。土岐花崗岩には NW の方向を持つ幅数十 m の石英斑岩の岩脈群が明瞭なチルドマージンを持って貫入している。この石英斑岩も瑞浪層群の基盤をなしているため (Uemura、1961)、土岐花崗岩貫入後、瑞浪層群堆積前に貫入したと考えられる。また花崗岩中には幅数 cm の石英脈が多数存在し、幅数 cm〜数十 cm のアブライト質な脈や玄武岩質の脈も一部で観察された。なお玄武岩質の岩脈は土岐局域域の変質带構成岩類との接触部にのみみられた。

東濃地域には瀬戸層群堆積以前に活動した月吉断層と、瀬戸層群堆積以後も活動したとされる山田断層帯 (Fujii、1968) とが、どちらも南側が上昇する逆断層として EW〜NE-SW 方向に走っている。

研究方法

本研究では比較的新鮮な花崗岩が露出する土岐口、伊野

Fig. 1. Geological map of the Tono district. Modified from Power Reactor and Nuclear Fuel Development Corporation (1984) and Yoshida et al. (1989).
Fig. 2. Map showing the occurrence of fractures and sample localities at Loc.1 in the Tokiguchi area.

Fig. 3. Map showing the occurrence of fractures and sample localities at Loc.2 in the Inogawa area. For explanation of symbols, see Fig. 2.

Fig. 4. Map showing the occurrence of fractures and sample localities at Loc.3 in the Akeyo area. For explanation of symbols, see Fig. 2.

Fig. 5. Map showing the occurrence of fractures and sample localities at Loc.4 in the Akeyo area. For explanation of symbols, see Fig. 2.
Fig. 6. Illustration showing the relationship between fracture and thin section plane.

Fig. 7. Photographs showing the occurrence of fractures in the Toki Granite. (a) A parallel fracture set forming sheet structure. (b) Two fracture sets with high intersection angle forming columnar structure. One set trends N 43° W and dips vertically, and the other trends N 35° E and dips 74° N. (c) Three fracture sets with high intersection angles forming block structure. Their attitudes are N 45° W, 82° W, N 25° E 90°, and horizontal. (d) Two fracture sets with low intersection angle. One set (top right to lower left) intersect the main set (horizontal) at angles of about 20 to 30 degrees.
前述の6地域で測定した土岐花崗岩中の割れ目の走向傾斜を下中央等面積投影法でコンターマップにまとめたものをFig. 9に示す。明世を除くそれぞれの地域において、NS～NW走向で高角度な割れ目系と、NE～EW走向で高角度な割れ目系の卓越がみられ、定林寺、明世地域において水平な割れ目系の強い卓越がみられる。これは土岐花崗岩全域において2つのほぼ直交する方向の高角度の割れ目系が発達しており、また岩体中央部では水平な割れ目系が卓越していると解釈できる。これらの結果は杉山（1966）による土岐花崗岩の割れ目の解析の結果とほぼ一致している。

鏡下における割れ目の特徴

Loc. 1～4の4地点（Fig. 1）で採取したコア中央の割れ目の鏡下での特徴をAppendixにまとめた。これらの特徴のうち、割れ目幅（fracture width）は未変形の原岩に挟まった

またこれら主割れ目に銳角に交わる割れ目も多数存在する（Fig. 7 d）。

野外における割れ目面の形態には、平面、曲面、階段状が存在する（Fig. 8）。階段状構造のサイズは、幅数cm、高さ数mmから幅数m、高さ数cmのものまでさまざまなものが観察された。またこれら平面、曲面、階段状の形態は、サイズは異なるが吉田ほか（1989）が行った土岐花崗岩のコアにおける割れ目パターンのP、C、Sグループにそれぞれ対比することができる。またいくつかの割れ目面上にスリッキングラインの存在も確認できた。
部分の幅をさし、その部分は充填物および原岩の鉱物、塑性変形帯にあたる。また開口幅（open width）は接着材が充填している部分の幅をさす（Fig. 10）。よって開口幅は割れ目幅に含まれ、またここでいう塑性変形帯は花崗岩粒子が破砕されている部分および先割れ目（肉眼で観察できる割れ目）に付随して開口した微細割れ目が卓越する部分で、塑性変形帯は強い波動消光、助粒子化等の変形を受けている部分を示す。なお充填物と変形帯をも合わせて割れ目帯としたのは、後述の微粒子が充填する割れ目と塑性変形帯を区別するのが難しくためである。接着剤に充填された割れ目（開口幅）はサスペル採用時もしくは薄片作成時に形成された2つの割れ目を含む可能性もある。しかしコア採取前の観察で、割れ目が沿って微小ではあるが開口が認められること、また微細割れ目の多くは接着剤のみならず鉱酸化物にも充填されていることも、また試料採取および薄片作成前にそれぞれ接着剤を十分固定入ることから、開口部の多くは採取前の水準存在しているものと認める。観察された割れ目帯は50～250 mm程度である。ただし割れ目沿って貫入した石英脈は、最大で200 mm程度の幅を持ちしたものみられた。開口幅は0.1～0.2 mm程度であり、最大で1 mm程度であった。コア採取時には1 mm以上の開口を持った割れ目は採択されなかったが、すべて採取時に破壊しなかったため、上記の値は直径25 mmのコアドリルを使用した場合に採取可能な割れ目および開口幅の最大値と考えられる。また、顕微鏡下における観察の際には、割れ目を充填する物質の種類および形状にも注目した。

これら割れ目および割れ目充填物の特徴から、土岐花岡岩中の割れ目を特徴として以下のようなものが挙げられることがわかった。

1. 開口しているかどうか
 (A) 開口している
 (B) 閉口している

2. さまざまな鉱物の充填
 (a) 鉱酸化物が充填している
 (b) 綿雲母が充填している
 (c) 石英が充填している
 (d) 緑泥石が充填している
 (e) 鉱酸化物が充填している
 (f) 微細粒子が充填している

3. 変形帯の特徴
 (a) 腐性変形帯を伴う
 (b) 塑性変形帯を伴う

以下に観察された割れ目および割れ目充填物の詳細を、上記に基づいて記載する。

1. 開口しているかどうか
 (A) 開口している

観察では接着剤が埋められた割れ目として0.1 mm以上の幅を持つと認識される。未変形の原岩に直接はさておき接着剤が充填する場合と、充填鉱物を切ってさらに閉口した割れ目に接着剤が充填する場合がある（Fig. 11 a11 b）。

(B) 閉口している

観察では不連続面としての割れ目のみが観察される場合と、割れ目が開口してそこには何かの鉱物が充填している場合がある。

(A)、(B)ともに、割れ目のほとんどが花岡岩鉱物粒子を切っているものであり、鉱物粒子の境界を使って発達する割れ目としては存在しない。顕微鏡下での観察される微細割れ目の内部を充填する場合も少々ある。鉱酸化物の鉱物種は同定できない。

2. さまざまな鉱物の充填
 (a) 鉱酸化物が充填している

観察している割れ目壁を鉱酸化物がコーティングしているものから、割れ目全体を充填しているものまである（Fig. 11 a）、またこれら鉱酸化物は肉眼で観察できる割れ目のみならず、顕微鏡下で観察される微細割れ目の内部を充填する場合も多々ある。鉱酸化物の鉱物種は同定できない。

(b) 綿雲母が充填している

割れ目を組成の綿雲母結晶の集合体が充填しているもの（Fig. 11 b）、この集合体は板状の綿雲母が放射状あるいは球状に成長してきたものである。なお0.1 mm程度の結晶もここではすべて綿雲母と呼ぶことにする。原岩の花岡岩中の長石は綿雲母化しており、特に長石と肉眼で確認できるサイズの等方性なす配列のステッピング部周辺の斜長石は綿雲母化が激しい。またこれらの綿雲母集合体においても長石に頭突いて鉱酸化物を密接に伴うことが多い。一部の割れ目は、原岩の壁面から順に、細粒で壁面に平行もしくはランダムに配列する綿雲母脈、粗粒で壁面に垂直に成長した綿雲母脈、鉱酸化物脈、開口部が狭小にみられる場合があり、綿雲母→鉱酸化物という充填鉱物の形成順序を示唆するものと考えられる。

(c) 石英が充填している

割れ目を石英が充填しているもの（石英脈）は、Figs. 2～

Fig. 11. Photomicrographs of fractures in the Toki Granite. (a) A fracture filled with microbreccias and iron-oxide matrix (white arrows). Two open fractures (black arrows) filled with glue are observed between the wall-rock feldspar grains and the iron-oxide fracture filling. Scale bar is 0.5 mm. Plane-polarized light. (b) A fracture filled with fine-grained sericite (white arrows). Secondary sericite is formed due to alteration of plagioclase around the fracture. A black arrow indicates an open fracture. Scale bar is 0.2 mm. Crossed-polarized light. (c) An NS-trending quartz vein on the right side of black arrows. Oblique fractures (from bottom left to upper right) are ladder joints. Scale bar is 2.0 mm. Crossed-polarized light. (d) An EW-trending quartz vein. The quartz vein has such a structure as chilled margin (arrows) composed of finer-grained quartz and sericite. Scale bar is 2.0 mm. Crossed-polarized light. (e) A fracture filled with fine-grained chlorite (arrows). Scale bar is 0.2 mm. Plane-polarized light. (f) A fracture filled with fine-grained chlorite and columnar epidote with a high relief (arrows). Scale bar is 0.5 mm. Plane-polarized light. (g) A fracture filled with microbreccias and the iron-oxide matrix (white arrows). The quartz and feldspar grains of the wall-rock granite include transgranular microcracks (black arrow). Scale bar is 1 mm. Plane-polarized light.
a. Main fracture filled with microbreccias of quartz and feldspar.

b. Dynamically recrystallized quartz.

c. Undeformed microbreccias of quartz and feldspar.

d. Quartz.

e. Feldspar.
5の地点のうちでは土岐口の落差のみに存在し、3つのサンプルを得ているにすぎない。しかしそれ割れ目の方向によって肉眼および鏡下の観察による特徴が明らかに異なるため土岐口地域に産出するものを中心に2つに分けて記載する。

(i) NS走向の石英脈

野外において花崗岩と石英脈の境界が明確であり、石英脈に直交する多数のはごし割れ目が存在する（Fig. 2）。肉眼においてこのような様相を呈するNS〜NW走向の幅1〜5 cm程度の石英脈は他の3つの地域でも多数観察できる。鏡下では花崗岩と石英脈のかたちは長石類の有無による判断しかできず、明確な境界がない（Fig. 1c）、また石英脈中の石英結晶の粒界の形は非常に不规则である。肉眼で観察できるのはしごし割れ目を鏡下では0.1〜0.2 mm程度の幅の開口割れ目である。

(ii) EW走向の石英脈

野外において石英脈中に、長さ数mmの6 角柱状の石英結晶が割れ目の両側面から成長しているためがみられる。このような特徴を持つ石英脈は土岐口で2つ。松野湖で1つ確認できた。鏡下では、石英脈の中心部より内部に球状の石英結晶がみられ、花崗岩との境界部には細粒石英結晶よりも細粒な細晶岩帯の粒を描いたようなノーベリーチ状の形状がみられる（Fig. 11d）。

(d) 緑れん石が充填している

割れ目を細粒の緑泥石結晶からなる集合体が充填しているもの（Fig. 11e）。緑泥石の形は不定形であるが、その大きさはほぼ均一である。

(e) 緑れん石が充填している

割れ目を柱状の緑れん石が充填しているもの（Fig. 11f）。緑れん石の柱は、あらゆる緑泥石の細粒の集合体とともに産出するが非常に多いが、緑れん石は単体で存在する。緑れん石の大きさは0.1〜0.2 mmのものが多く、最大で0.5 mm程度のものまでみられる。

(f) 微小粒子が充填している

割れ目中には石英結晶あるいは高純度の石英、石英・高純度石英・黒雲母（緑泥石化したものを含む）、斜長石・カリ長石などの微小鉱物粒子によって充填されているもの（Fig. 11a）。鏡下では、微小粒子が接合している場合（緑泥石の組織のクラスター対応）と、微小粒子が基中に浮いているように見える場合（同じマトリックス対応に相当）とがある。微小粒子は、長角形～下長角形で、その大きさは0.1 mm程度のものが多く、最大で約0.5 mmに達する。微小粒子の種類は原岩である花崗岩を構成するものであるが、割れ目周辺の原岩鉱物に関係なくこれらが明確に存在していることが多い。緑雲母基質中に微小粒子を含むものが、さらに一つの粒子として鉱物化物基質に取り込まれることも多い。

3. 变形帯の特徴

(a) 脱酸変形帯を伴う

主割れ目（肉眼で観察できる割れ目）に付随する開口した微小割れ目（Fig. 2）は、主割れ目が卓越するもの。主に主割れ目は全状花崗岩が破壊されているもの（Fig. 11g）。これらの変形帯は主割れ目の周りに幅1 mm程度までのものが観察された。

(b) 塗変形帯を伴う

(a)の特徴を持つ割れ目は主割れ目やそれと伴に付随した微小割れ目にずれて認められ、それら主割れ目や微小割れ目に沿って原岩の石英が動的再結晶・亜粒子化・波動変形を起こす。ここではこのような特徴を持つ割れ目の特徴として、土岐口地域にみられるほとんどNS走向の最も典型的な一つの割れ目（Fig. 2のshear fracture）を記載する。

この割れ目は中间に主割れ目を持ち、両側にそれぞれ幅0.5〜1 mm程度の原岩結晶が変形を受けている変形帯を持つ。そして主割れ目を石英・長石などの破砕粒子が緑雲母や緑泥石を伴って充填する（Fig. 12a）。この石英・長石は（i）の特徴を持つ、鉱物のマトリックスをほとんど持たない。石英・長石粒子のうち0.1 mm程度以上の粗粒な粒子はほとんど変形を受けていない。0.1 mm径以下の細粒な緑雲母は結晶の形が不明確で、動的再結晶を起こしている可能性もあるが、偏光顕微鏡下での観察ではっきりしない（Fig. 12b）。

変形帯には主割れ目と15〜60度の角度を持って斜交する微小割れ目が多数存在する。そして主・微小割れ目の周りの石英の変形は波動変形を起こしていった（Fig. 12c 写真中央やや左上など）、主・微小割れ目の周りに幅0.1〜0.3 mm程度の動的再結晶が起こっている（Fig. 12d, e, f）。特に微小割れ目沿いの動的再結晶帯は主割れ目周辺で明瞭に観察される。主割れ目から離れたところでは部分的に動的再結晶が起こっている（Fig. 12c, e, f, g, h, i, j, k, l, m, n, o, p, q, r, s, t, u, v, w, x, y, z）。この観察結果は、微小割れ目沿いの動的再結晶の帯周辺に、亜粒群が存在する（Fig. 12f）。なお、直接＝コルにおける観察では、主割れ目を充填する変形された細粒で石英粒子群と、原岩英石の動的再結晶粒子群の境界は明瞭ではないが、変形帯は明滅し、間隔＝コルではっきりと区別できる（Fig. 12a, e, f）。

Fig. 12. Photomicrographs of brittle/plastic shear zones in Fig. 2. All photographs are horizontal sections. (a) The main shear fracture filled with microbreccia of quartz and feldspar (small arrows). Stui bar is 0.3 mm. Plane-polarized light. Sample A-12. (b) Same area shown in (a) showing dynamically recrystallized quartz of the wall-rock granite. Scale bar is 0.3 mm. Crossed-polarized light. (c) Explanation of different microstructures in (a). Notice that the three figures (a, b, c) cover the same area. (d) Shear fracture (large arrows) with oblique microcracks (small arrows). In the wall-rock granite, some quartz grains show undulatory extinction, and new small quartz grains are formed by dynamic recrystallization along the fracture and microcracks. Scale bar is 0.5 mm. Crossed-polarized light. Sample A-09. (e) Close-up view of the rectangular area shown in (d) showing dynamically recrystallized quartz grains along a microcrack. Scale bar is 0.3 mm. Crossed-polarized light. (f) Subgrains and dynamically recrystallized grains in quartz along microcracks (lower left to right top). Scale bar is 0.3 mm. Crossed-polarized light. Sample A-12. (g) Biotite deformed by the main shear fracture indicating the left-lateral slip. Scale bar is 0.3 mm. Plane-polarized light. Sample A-14, along the same main fracture shown in (a) and (d).
水平な薄片において、主割れ目に沿って引きずられて変形した2、3の黒雲母が左ズレのセンスを示している（Fig. 12 g）ので、それと続きである主割れ目（Fig. 12 a, d の太い矢印に挟まれた割れ目）の剪断方角も左ズレと判断できる。また主割れ目と20度前後の角度を持つ微小割れ目は左ズレを示し、より高角度40〜60度くらいのものは右ズレを示している（Fig. 12 d）。なお主割れ目と20度前後の角度を持つ微小割れ目は、ズレがなく、動的な結晶粒子群も伴わない混合微小割れ目を多く存在する（Fig. 12 a, d）。このような微小割れ目は変形帯から数mm離れた未変形の石英粒子にも多く観察されることから、剪断変形を受ける前から存在していたものと考えられる。

割れ目の特徴と走向傾斜の関係

Fig. 13 に (A), (B) および (a) ~ (g) や (α), (β) の特性を持つ割れ目の走向傾斜と数を示す。ただしこれは Figs. 2〜5 のすべての地域のデータをまとめたもので、関口および閉口の特徴を持つ割れ目数の合計がすべての割れ目数より多いのは、試料 A-12, 14 のように一本の割れ目に閉口部分がみられるためである。Fig. 13 および Appendix, Figs. 2〜5 からわかるように、試料が採取できなかった水平面に10cmに短い割れ目を除くと、閉口した割れ目、石英変・緑泥石・緑れん石で充填された割れ目、脆性変形帯伴う割れ目などの方向にも相違にみられる。閉口した割れ目、石英・緑泥石・緑れん石で充填された割れ目は相対的に少ないが、野外において高角度傾斜の割れ目が2方向に卓越していることを考えれば、どの特徴もその直交する2方向に存在する。なお閉口した割れ目は Appendix やもしくは緑れん石の充填を伴うものが多く、これは石英・緑れん石が割れ目を完全に塞ぐためと思われる。塑性変形帯伴う割れ目は EW 走向の割れ目には存在しないが、これも相対的な数が少ないために今回採取できなかった可能性も考えられる。よって土岐花崗岩中の高角度を持つ割れ目に関しては、その走向傾斜に関係なく (A), (B) および (a) ~ (g) や (α), (β) type fractures in Figs. 2〜5. Equal-area, lower hemisphere projections of poles to the fracture surfaces. The denominators indicate the total number of fractures analyzed, and the numerators indicate the number of fractures plotted.
考察

1. 割れ目における脆性・塑性変形

（β）の特徴を持つ割れ目には、剪断によって形成された主割れ目の中に破壊された石英・長石などの粒子が残る（すなわち（α）の特徴を合わせ持ち）、主割れ目およびそれに斜交する微小割れ目沿って、原岩の石英が動的再結晶・亜粒子化・波動消光を起こしている。よって脆性破壊による主・微小割れ目の形成→石英の塑性変形という形成順序が示唆される。つまり高木（1998）による破断面（fracture）沿って形成されるマイロナイトの一例であるといえる。そこでFigs. 12からわかるように、この割れ目はほど強く塑性変形を受けていない。したがって、この割れ目に関しては、破断面（fracture）沿って形成されるマイロナイトとするのが適切であろう。なお、ここでの脆性・塑性変形のうちの脆性破壊は、高木（1998）が定義した変形機構のなかの破砕破壊を含むものである。

破断面（fracture）沿って形成されるマイロナイトの例はいくつか報告されており（高木, 1998にまとめられている）、その多くはすでに存在していた破断面に沿って熱水が浸透し、軟化が進んでマイロナイト化したと考えられている（Gibson, 1990; Tourigny and Tremblay, 1997）。土壌花崗岩中の（β）の特徴を持つ割れ目中にも、縞雲母・緑泥石といわれる熱水性鉱物が存続することから、割れ目に熱水が関与したことは明らかであり、これらは加水軟化を引き起こした熱水と同じものの可能性がある。そこで破砕粒子とともに割れ目を充填する緑泥石、縞雲母などの鉱物は変形を受けていないことから、（β）の特徴を持つ割れ目の形成過程は次のよう

Fig. 14. Illustration showing an evolutionary model of a brittle/plastic shear zone and undeformed fracture-filling minerals. (a) Brittle shear fracture formed a conduit of fluid, by which the granite was altered and weakened. (b) Plastic shear zone developed along the pre-existing brittle fracture through hydrolytic weakening of the host rock. (c) After stress drop, the main fracture was filled with hydrothermal minerals. Modified from Tourigny and Tremblay (1997).

は再び浸透した熱水により緑泥石、縞雲母などの鉱物が割れ目を充填した（Fig. 14）。なお石英の軟化を引き起こした熱水とは、縞雲母・緑泥石を充填した熱水が同一のものであると仮定すると、石英の塑性変形は緑泥石岩相で形成されたことを示し、Gibson（1990）。Tourigny and Tremblay（1997）で見積もられている変形時の程度とはほぼ一致する。よってこれらの熱水は同一である可能性が高い。

2. 割れ目における充填鉱物の形成

鉄酸化物および縞雲母は多くの割れ目に普遍的に存在するので、まずこの2つの充填鉱物の形成順序から考察する。すでに述べたように、鉄酸化物は縞雲母集合体中やその周りを取り囲むように産出する。また、縞雲母を基質とし微小粒子を含む粒子がさらに鉄酸化物中に取り込まれていることがある。さらに、花崗岩壁から縞雲母、鉄酸化物の順で晶出したことを示す閉口した割れ目もみられる。吉田ほか（1989）、岩月・吉田（1997）は土壌花崗岩のポーリングコアを観察し、地表から深度130 m付近までの割れ目中には鉄酸化物と縞雲母が共存するのに対し、縞雲母は主に深く部分にも存在することを報告している。これらの観察事実および研究結果に基づけば、岩月・吉田（1997）も報告しているように、縞雲母→鉄酸化物の順で割れ目を充填したことは明らかである。

Kitagawa et al.（1988）は中国地方に分布する花崗岩中の熱水から晶出した縞雲母脈および熱水交代作用によって形成された縞雲母のK-Ar年代を測定し、どちらも花崗岩の花崗岩のK-Ar年代とはほぼ同時期に形成されたものであることを報告している。また山下ほか（1988）によれば、東濃地方を含む濃飛岩帯では、土壌花崗岩貫入時期に含む白亜紀後期～古第三紀初期の一連の酸性火成岩の形成以降、火成活動の証拠はない。以上のような研究結果は、土壌花崗岩中の割れ目を充填する縞雲母が、白亜紀後期の土壌花崗岩などの一連のマグマ活動に伴う熱水交代作用を示唆する。

鉄酸化物の充填は、地表から浸透した酸化的地下水流が到達可能な深さ（岩月・吉田, 1997年のポーリングコアでは深度130 m）までに限られるものと考えられる。したがって、花崗
岩体の上昇あるいは岩体上部が剝取されるにつれ、岩体のより深部が鉄酸化物充填可能域になると、土岐花岡岩が瑞浪層群に不整合に覆われることから、この時期は中新世にまでさかのぼると考えられる。また、焼雲母および鉄酸化物基質中にみられる微細粒子は、その構成粒子の種類などから花岡岩および裂割目充填物起源と考えられ、かつこれらが混在しているので、剝取作用や開裂裂割目形成に伴って破壊された粒子（例えば（α）のような変形帯中の粒子）が熱水や地下水とともに移動し、焼雲母・鉄酸化物中に固定されたものと考えられる。

石英、緑泥石、隕れん玉といった充填鉱物も熱水作用により形成されたのであろう。これらのうち石英脈については2種類の形態がみられた。NS～NW 走向の石英脈は岩屑の花崗岩と調和的であるが、花崗岩体の温度がまだ比較的高かった時期に貫入したものと推定される。それに対してEW 走向の石英脈は冷凍組織を持ち、熱水によって形成されたと考えられる焼雲母が境界部にみられるので、NS～NW 走向のものに比べて花崗岩が相対的に低温の時期に貫入したものと考えられる。

以上のような剝取目充填鉱物の形成順序などをFig. 15 にまとめ示した。Fig. 15 a は縦軸に深さをとり、地表から浸透した酸性の地下水が層層に分かれ、鉄酸化物が充填されることを示す。Fig. 15 b は縦軸におよそ100万年を取り、土岐花岡岩貫入を含むマグマ活動期の熱水活動によって熱水性鉱物が充填され、マグマ活動終了以降、特定の範囲内（Fig. 15 a 参照）で鉄酸化物が充填されたことを示す。

まとめと今後の課題

土岐花岡岩中にはNS～NW 走向およびNE～EW 走向の高角度の剝取目系と、水平な剝取目系の3方向の卓越がみられる。このような高角度の剝取目系は変形帯や充填鉱物等の特徴から、剝取目形成時には花岡岩と水との密接な関係がうかがえる。このうち変形帯に関しては、変形破壊に塑性変形を重複した剝取目がみつか、熱水による加水軟化が原因と考えられる。また焼雲母に関しては、熱水による焼雲母等の形成一地域地表から浸透した地下水による鉄酸化物の形成という2つのステージが考えられる。

今後は上記のような剝取目的特徴が水平な剝取目系にもみられるかを調べ、また剝取目的成因を探究するため、剝取目形成時における応力場等を推定する解析を行いたい。

謝辞

岐阜大学の小嶋智教授には本研究全般において多大なご助言および講義をしていただいた。名古屋大学の足立守教授、竹内誠教授には大変有益なご助言をいただき、与謝野教授には本研究において大変お世話になった。早稲田大学の古田秀雄教授には本研究においてご助言をいただき、核燃料サイクル開発機構・東濃地質科学センターの吉田英一博士には研究を進めるにあたり、大変有益なご助言をいただいた。剝取目の走向傾斜のステレオ投影においてはCornell大学のR. W. Allmendinger教授のStereonet 4、9、5を利用した。原稿の査読をしていただき、多くのご指導をいただいた岩手大学の越部信博士、千葉大学の金川久一教授に厚く御礼申し上げます。

文献

動力炉・核燃料開発事業団中央深研究事務所、1984. 東濃地域地質研究観

<table>
<thead>
<tr>
<th>(要旨)</th>
</tr>
</thead>
</table>

藤井幸泰・小崎 智. 1996. 岐阜県南部土岐花崗岩中の割れ目解析. 平成8年度応用地質学会中部支部研究発表会・講演会予稿集, 9-12.

杉山隆一. 1966. 東濃ウラン鉛床帯の基盤花崗岩類の研究. 特に花崗岩類の分類と花崗岩帯の地質構造を、昭和40年度原産燃料公社委託研究報告, 9 p.

横田修一郎. 1974, 画像計画において花崗岩中の断層系. 地質誌, 80, 205-214.

吉田英一・矢沢明夫・落合孝一・山川 宏. 1988, 深部岩質岩中の割れ目解析：岐阜県東濃地域に分布する花崗岩類を例にして一. 地質誌, 30, 131-142.

中部日本東濃地方に分布する白亜紀後期の土岐花崗岩中の割れ目について, 露頭および鏡下での観察を行った. 割れ目は開口および塑性・塑性変形帯といった形態的特徴を持ち, かつさまざまな鉱物によって充てられている. 割れ目充てん物には鉱物化物, 緑雲母, 石英, 緑泥石, 緑泥石などの自生鉱物, および花崗岩岩脈と考えられる破砕された石英, 長石, 黒雲母粒子などがみられる. 自生鉱物のうち, 緑雲母, 石英, 緑泥石, 緑泥石は花崗岩マグマの活動に伴う熱水性鉱物と考えられるが, 鉱物化物はその産状から, 熱水性鉱物よりも後に地表から浸透した地下水により形成されたものと推測される. 割れ目は花崗岩の脆性破壊によって形成されたものである. しかし一部には塑性変形を重複して被った割れ目も存在する. このような構造は脆性剪断帯に浸透した熱水による, 石英の加水軟化によって形成されたものと推定される.
Appendix Characteristics of fractures in the Toki Granite observed under the microscope.

<table>
<thead>
<tr>
<th>sample No.</th>
<th>fracture orientation</th>
<th>fracture width (mm)</th>
<th>open width (mm)</th>
<th>Fillings</th>
<th>brittle deformation</th>
<th>ductile deformation</th>
<th>shear sense</th>
</tr>
</thead>
<tbody>
<tr>
<td>A-06</td>
<td>h N80°E 80°S</td>
<td>0.1-1.5</td>
<td>0.1</td>
<td>Fe, Se</td>
<td>○</td>
<td></td>
<td></td>
</tr>
<tr>
<td>v</td>
<td></td>
<td>0.1-1.5</td>
<td>0.1-0.2</td>
<td>Fe, Se</td>
<td>○</td>
<td></td>
<td></td>
</tr>
<tr>
<td>A-08</td>
<td>h N80°E 80°S</td>
<td>2</td>
<td>0.1</td>
<td>Fe, Se</td>
<td>○</td>
<td></td>
<td></td>
</tr>
<tr>
<td>v</td>
<td></td>
<td>2</td>
<td>0.1</td>
<td>Fe, Se</td>
<td>○</td>
<td></td>
<td></td>
</tr>
<tr>
<td>h</td>
<td>N80°E 80°S</td>
<td>0.5-1.0</td>
<td>-</td>
<td>Fe, Se, Qz(euhedral)</td>
<td>○</td>
<td></td>
<td></td>
</tr>
<tr>
<td>v</td>
<td></td>
<td>0.5-1.0</td>
<td>-</td>
<td>Fe, Se, Qz(euhedral)</td>
<td>○</td>
<td></td>
<td></td>
</tr>
<tr>
<td>A-09</td>
<td>h NS 70°E</td>
<td>3</td>
<td>0.1 x 2</td>
<td>Fe, MB</td>
<td>○</td>
<td></td>
<td>left</td>
</tr>
<tr>
<td>v</td>
<td></td>
<td>3.0 x 4.0</td>
<td>0.1 x 2</td>
<td>Fe, MB</td>
<td>○</td>
<td></td>
<td></td>
</tr>
<tr>
<td>A-12</td>
<td>h N10°E 70°E</td>
<td>0.5-1.0</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>left</td>
</tr>
<tr>
<td>v</td>
<td></td>
<td>2</td>
<td>Ch, MB</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>A-13</td>
<td>h N10°E 70°E</td>
<td>2</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>left</td>
</tr>
<tr>
<td>v</td>
<td></td>
<td>2</td>
<td>Ch, MB</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>A-14</td>
<td>h N10°E 70°E</td>
<td>1.5</td>
<td>0.0.1</td>
<td>Fe, MB</td>
<td>○</td>
<td></td>
<td>left</td>
</tr>
<tr>
<td>v</td>
<td></td>
<td>1.5</td>
<td>0.0.5</td>
<td>Fe, MB</td>
<td>○</td>
<td></td>
<td></td>
</tr>
<tr>
<td>A-15</td>
<td>h N70°E 75°S</td>
<td>0.1-0.5</td>
<td>0.1-0.2</td>
<td>Fe, Se, MB</td>
<td>○</td>
<td></td>
<td></td>
</tr>
<tr>
<td>A-16</td>
<td>h N70°E 75°S</td>
<td>0.5</td>
<td>0.1</td>
<td>Fe, Se, MB</td>
<td>○</td>
<td></td>
<td></td>
</tr>
<tr>
<td>v</td>
<td></td>
<td>0.5</td>
<td>0.1</td>
<td>Fe, Se, MB</td>
<td>○</td>
<td></td>
<td></td>
</tr>
<tr>
<td>A-17</td>
<td>h N70°E 75°S</td>
<td>0.4</td>
<td>0.1-0.2</td>
<td>Fe, Se, MB</td>
<td>○</td>
<td></td>
<td></td>
</tr>
<tr>
<td>v</td>
<td></td>
<td>0.4</td>
<td>0.1-0.2</td>
<td>Fe, Se, MB</td>
<td>○</td>
<td></td>
<td></td>
</tr>
<tr>
<td>A-20</td>
<td>h N10°E 70°E</td>
<td>20</td>
<td></td>
<td>Qz</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>v</td>
<td></td>
<td>20</td>
<td></td>
<td>Qz</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>h</td>
<td>ladder joint</td>
<td>1</td>
<td>0.1-0.3</td>
<td>Fe</td>
<td>○</td>
<td></td>
<td></td>
</tr>
<tr>
<td>A-21</td>
<td>h N10°E 70°E</td>
<td>0.1-1.5</td>
<td>0.1-1.2</td>
<td>Fe, Se, Ch, MB</td>
<td>○</td>
<td></td>
<td>left</td>
</tr>
<tr>
<td>v</td>
<td></td>
<td>0.1-1.5</td>
<td>0.1-1.2</td>
<td>Fe, Se, Ch, MB</td>
<td>○</td>
<td></td>
<td></td>
</tr>
<tr>
<td>A-22</td>
<td>h N10°E 70°E</td>
<td>1.5</td>
<td>0.1</td>
<td>Fe, Ch, MB</td>
<td>○</td>
<td></td>
<td>left</td>
</tr>
<tr>
<td>v</td>
<td></td>
<td>1.5</td>
<td>0.1</td>
<td>Fe, Ch, MB</td>
<td>○</td>
<td></td>
<td></td>
</tr>
<tr>
<td>h</td>
<td>N10°W 70°E</td>
<td>0.1-0.5</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>left</td>
</tr>
<tr>
<td>v</td>
<td></td>
<td>0.1-0.5</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>A-23</td>
<td>h N70°E 75°S</td>
<td>0.2-0.5</td>
<td>0.1-0.2</td>
<td>Fe</td>
<td>○</td>
<td></td>
<td></td>
</tr>
<tr>
<td>v</td>
<td></td>
<td>0.2-0.5</td>
<td>0.1-0.2</td>
<td>Fe</td>
<td>○</td>
<td></td>
<td></td>
</tr>
<tr>
<td>A-24</td>
<td>h N70°E 75°S</td>
<td>0.3-0.5</td>
<td>0.1</td>
<td>Fe, Se, MB</td>
<td>○</td>
<td></td>
<td></td>
</tr>
<tr>
<td>v</td>
<td></td>
<td>0.3-0.5</td>
<td>0.1</td>
<td>Fe, Se, MB</td>
<td>○</td>
<td></td>
<td></td>
</tr>
<tr>
<td>A-28</td>
<td>h N80°E 80°S</td>
<td>12</td>
<td></td>
<td>- Fe, Se, Qz(euhedral)(like chilled margin)</td>
<td>○</td>
<td></td>
<td></td>
</tr>
<tr>
<td>v</td>
<td></td>
<td>12</td>
<td></td>
<td>- Fe, Se, Qz(euhedral)(like chilled margin)</td>
<td>○</td>
<td></td>
<td></td>
</tr>
<tr>
<td>A-29</td>
<td>h N10°E 70°E</td>
<td>0.5</td>
<td>0.1-0.5</td>
<td>Fe, Se, MB</td>
<td>○</td>
<td></td>
<td></td>
</tr>
<tr>
<td>v</td>
<td></td>
<td>0.5-1.0</td>
<td>0.1-0.5</td>
<td>Fe, Se, MB</td>
<td>○</td>
<td></td>
<td></td>
</tr>
<tr>
<td>B-01</td>
<td>h N10°W 75°W</td>
<td>0.3</td>
<td>0.2</td>
<td>Fe, MB</td>
<td>○</td>
<td></td>
<td></td>
</tr>
<tr>
<td>v</td>
<td></td>
<td>0.3</td>
<td>0.1-0.2</td>
<td>Fe, MB</td>
<td>○</td>
<td></td>
<td></td>
</tr>
<tr>
<td>B-04</td>
<td>h N24°W 70°E</td>
<td>0.2-0.5</td>
<td>0.1-0.3</td>
<td>Fe, Se, Ch</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>v</td>
<td></td>
<td>0.2-0.5</td>
<td>0.1-0.3</td>
<td>Fe, Se, Ch</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>B-05</td>
<td>h N50°E 75°S</td>
<td>0.5</td>
<td>0.1-0.2</td>
<td>Fe, Se, MB</td>
<td>○</td>
<td></td>
<td></td>
</tr>
<tr>
<td>v</td>
<td></td>
<td>0.5</td>
<td>0.1-0.2</td>
<td>Fe, Se, MB</td>
<td>○</td>
<td></td>
<td></td>
</tr>
<tr>
<td>B-07</td>
<td>h N30°E 80°E</td>
<td>0.3-0.5</td>
<td>0.1-0.3</td>
<td>Fe, Se, MB</td>
<td>○</td>
<td></td>
<td></td>
</tr>
<tr>
<td>v</td>
<td></td>
<td>0.3-0.5</td>
<td>0.1-0.3</td>
<td>Fe, Se, MB</td>
<td>○</td>
<td></td>
<td></td>
</tr>
<tr>
<td>B-08</td>
<td>h irregular</td>
<td>0.1-0.5</td>
<td>0.1-0.5</td>
<td>Fe, Se, MB</td>
<td>○</td>
<td></td>
<td></td>
</tr>
<tr>
<td>h</td>
<td>N30°E 80°E</td>
<td>0.5</td>
<td>0.1-0.5</td>
<td>Fe, Se, MB</td>
<td>○</td>
<td></td>
<td></td>
</tr>
<tr>
<td>v</td>
<td></td>
<td>0.5</td>
<td>0.1-0.5</td>
<td>Fe, Se, MB</td>
<td>○</td>
<td></td>
<td></td>
</tr>
<tr>
<td>B-09</td>
<td>h N30°E 84°E</td>
<td>0.2-0.5</td>
<td>0.1-0.2</td>
<td>Fe, Se</td>
<td>○</td>
<td></td>
<td></td>
</tr>
<tr>
<td>b</td>
<td></td>
<td>0.2-0.5</td>
<td>0.1-0.2</td>
<td>Fe, Se</td>
<td>○</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Sample No.</td>
<td>Fracture Orientation</td>
<td>Fracture Width (mm)</td>
<td>Open Width (mm)</td>
<td>Fillings</td>
<td>Brittle Deformation</td>
<td>Ductile Deformation</td>
<td>Shear Sense</td>
</tr>
<tr>
<td>------------</td>
<td>----------------------</td>
<td>---------------------</td>
<td>----------------</td>
<td>----------</td>
<td>--------------------</td>
<td>---------------------</td>
<td>-------------</td>
</tr>
<tr>
<td>B-11</td>
<td>h N30°E 70°E</td>
<td>0.1-0.5</td>
<td>0.1-0.3</td>
<td>Fe, Se, MB</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>B-12</td>
<td>h N30°E 70°E</td>
<td>0.5</td>
<td>0.2</td>
<td>Fe, Se</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>v</td>
<td></td>
<td>0.2-0.5</td>
<td>0.2</td>
<td>Fe, Se</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>h</td>
<td>N30°E 70°E</td>
<td>0.5</td>
<td>0.1</td>
<td>Fe, Se, MB</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>v</td>
<td></td>
<td>0.2-0.1</td>
<td>0.1</td>
<td>Fe, Se</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>B-13</td>
<td>h N30°W 70°E</td>
<td>0.8</td>
<td>0.2-0.5</td>
<td>Fe, Se, MB</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>B-14</td>
<td>h N25°W 60°E</td>
<td>2.0</td>
<td>0.1-0.5</td>
<td>Fe, Se, MB</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>v</td>
<td></td>
<td>0.2-0.7</td>
<td>0.2</td>
<td>Fe, Se, MB</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>v horizontal</td>
<td></td>
<td>0.2-0.7</td>
<td>0.2</td>
<td>Fe</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>B-15</td>
<td>h N30°W 70°W</td>
<td>0.5-1.0</td>
<td>0.1-0.5</td>
<td>Fe, Se, MB</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>v</td>
<td></td>
<td>0.3-0.7</td>
<td>0.1-0.3</td>
<td>Fe, Se, MB</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>C-13</td>
<td>h N40°W 90°</td>
<td>0.5</td>
<td>0.1-0.5</td>
<td>Fe, MB</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>v</td>
<td></td>
<td>0.5</td>
<td>0.1-0.5</td>
<td>Fe, MB</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>v</td>
<td></td>
<td>0.2-0.5</td>
<td>0.2</td>
<td>Fe, MB</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>C-21</td>
<td>h N30°E 80°S</td>
<td>0.2-0.5</td>
<td>0.2-0.5</td>
<td>Fe, MB</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>v</td>
<td></td>
<td>0.2-0.5</td>
<td>0.2-0.5</td>
<td>Fe, MB</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>C-25</td>
<td>h N30°W 80°N</td>
<td>0.2-0.7</td>
<td>0.1-0.5</td>
<td>Fe, Se, MB</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>v</td>
<td></td>
<td>0.2-0.5</td>
<td>0.2-0.5</td>
<td>Fe, Se, MB</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>C-26</td>
<td>h N30°E 80°S</td>
<td>1.0</td>
<td>0.2-0.5</td>
<td>Fe, MB</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>v</td>
<td></td>
<td>0.3-0.5</td>
<td>0.2-0.3</td>
<td>Fe, Ch, Ep, MB</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>C-27</td>
<td>h N75°W 90°</td>
<td>0.5</td>
<td>0.1</td>
<td>Fe, Se, MB</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>C-28</td>
<td>h N30°W 80°N</td>
<td>0.5-1.5</td>
<td>0.2 x 2</td>
<td>Fe, Ch, Ep</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>v</td>
<td></td>
<td>0.5-0.7</td>
<td>0.1</td>
<td>Fe, Ch, Ep</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>v</td>
<td></td>
<td>0.2-0.2</td>
<td>-</td>
<td>Ch, Ep</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>C-29</td>
<td>h N67°E 90°</td>
<td>0.5</td>
<td>0.3-0.5</td>
<td>Fe</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>C-30</td>
<td>h N67°E 90°</td>
<td>0.5-1.0</td>
<td>0.1-0.5</td>
<td>Fe, MB</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>v</td>
<td></td>
<td>0.2-0.5</td>
<td>0.2-0.3</td>
<td>Fe, MB</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>C-31</td>
<td>h N40°W 90°</td>
<td>0.3-1.0</td>
<td>0.1-0.7</td>
<td>Fe, Se, MB</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>v</td>
<td></td>
<td>0.5</td>
<td>0.1</td>
<td>Fe, Se, MB</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>v horizontal</td>
<td></td>
<td>0.3</td>
<td>0.3</td>
<td>Fe</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>C-32</td>
<td>h N67°E 90°</td>
<td>0.5</td>
<td>0.3-0.5</td>
<td>-</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>C-33</td>
<td>h N45°W 80°N</td>
<td>0.5-2.0</td>
<td>0.1-1.0 x 2</td>
<td>Fe, Se, MB</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>v</td>
<td></td>
<td>0.7-2.5</td>
<td>0.1-2.5</td>
<td>Fe, Se, MB</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>C-34</td>
<td>h N45°W 80°N</td>
<td>1.0-2.0</td>
<td>0.1-1.0 x 2</td>
<td>Fe, Se, MB</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>v</td>
<td></td>
<td>0.2-0.5</td>
<td>0.2-0.5</td>
<td>Fe, Se, MB</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>D-2</td>
<td>h N 58°E 80°S</td>
<td>0.2-1.0</td>
<td>0.1</td>
<td>Fe, Se, Ch, MB</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>v</td>
<td></td>
<td>0.2-1.5</td>
<td>0.1</td>
<td>Fe, Se, Ch, MB</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>D-5</td>
<td>h N 85°W 90°</td>
<td>0.5-1.0</td>
<td>-</td>
<td>Ch, Ep</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>v</td>
<td></td>
<td>0.5-1.0</td>
<td>-</td>
<td>Ch, Ep</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>D-7</td>
<td>h N 80°W 90°</td>
<td>1.5-1.5</td>
<td>-</td>
<td>Ch, Ep</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

1) For locations, see Figs. 2-4.
2) h: horizontal section, v: vertical section
3) For explanation, see Fig. 9.
4) Fe: Fe-oxide, Sc: Sericite, Ch: Chlorite, Ep: Epidote, Qz: Quartz, MB: Micro-breccia
5) left: left-lateral slip