Stratigraphy and ammonoid assemblages of the Upper Cretaceous in the Ashibetsu Lake area, Hokkaido, Japan

Abstract

This paper describes litho- and biostratigraphy of the Upper Cretaceous in the Ashibetsu Lake area, Hokkaido, Japan. The Cretaceous deposits in this area are represented by offshore facies, and are divided into the Takinosawa Formation composed of alternating beds of sandstone and mudstone (upper part of the Middle Yezo Group), and the Kashima Formation composed of mudstone (lower part of the Upper Yezo Group). Each Formation is divided into two units respectively: unit Mh and Mi below, and unit Ua and Ub above. The Cretaceous succession ranges from the Upper Turonian to Santonian, based on age indicative ammonoids and inocerams. The Turonian/Coniacian boundary is assigned to the middle part of the unit Ua, and the Coniacian/Santonian boundary to the uppermost part of the unit Ub. The species richness and abundance of ammonoids decrease in units Mi and Ua. It is considered that during the late Turonian-early Coniacian time, ammonoid assemblages were affected by the spread of the oxygen-depleted conditions in the bottom water.

Key words: Hokkaido, Ashibetsu Lake, stratigraphy, Upper Cretaceous, oxygen-depleted conditions.
は泥岩主体の神経相のため、岩相変化に乏しく、かついくつかの地層が繊維返すことから層序が未だ確立していない。そこで本論では、特に湖盆地の地質を明らかにし、岩相層序と化石層序を確立することを目的とする。

地質概説

芦別湖地域の白亜系は、中部蝦夷層群および上部蝦夷層群からなる（Fig.2），吉田・神戸（1955）は芦別湖地域に上部蝦夷層群の泥岩相が広く分布することを初めて明らかにした。松本・岡田（1973）は、芦別湖におけるルートマップを示し、流路による地形の繊細な変化がコアリングを高めるか分布していることを示唆した。しかしその後、層序学的変化はわずかに詳細な地質構造や軟体動物化石の層序学的分布は不明であるままであった。

芦別湖地域の南方の大沼張地域は、南北に走る大沼張街道を上断層と下断層の2つの断層により、東西に分離された地域、中部の逆転斜面構造を示す地域、西部の波状疊構造を特徴とする地域の、大きく4つ以上の構造単元である（石川ほか，1994）。芦別湖地域は大沼張地域の内部構造単元とされ、南方に南方性の波状疊構造を示す地域と判別される。地層の傾斜は10〜80°とさまざまだが、東側ほど傾斜角が大きい傾斜に（Fig.3）。右側も比較的明確に東向きに観察されるも、西部は東西に上断層の地層となる（Fig.3）。また、地質図に表されていない領域を多数存在する。

岩相層序・化石層序

南方延長上の大沼張地域では、アルファベットを含めずに体を区分する場合（Matsumoto, 1942）と、地名を層序名とする場合（尾崎ほか，1954，本山ほか，1991，高橋ほか，1997）がある。野外調査の結果、本山ほか（1991）の提唱した層序区分およびKawabe（2000）における岩相ユニット区分は芦別湖地域でもほぼそのまま用いることができたことがわかった。すなわち地域の白亜系は、中層蝦夷層群上部の瀬戸沼層、上部蝦夷層群下部の鹿島層に区分され、瀬戸の沼層はMh, Miの岩相ユニットに、鹿鳥層はUa, Ubの岩相ユニットにそれぞれ細分化される（Fig.2），対比柱状図および岩相マップをFigs.4, 5, 6に示す。また化石産出リストをTables 1, 2に、各岩相別の大小構造の産出レンジチャートをFigs.6, 7にそれぞれ示す。以下、各層の岩相および化石の産出状況を記載する。

1. 中部蝦夷層群 濟ノ沼層

松本（1939）は天塩町中川町佐久地域に分布する砂岩を主とした粗粒砂岩層で特色付けられる地層を佐久層と命名した。大沼張地域におけるその相当層は砂岩泥岩互層で特徴付けられ、Matsumoto（1942）とⅡ m〜Ⅱ lの7ユニットに区分した。本山ほか（1991）は同地層に対して瀬戸沼層と命名した。今回筆者らはKawabe（2000）に従い、本層を2つの岩相ユニットに区分した。
1-1. 岩相ユニット Mh 本ユニットは、Matsumoto (1942) の II r、長尾ほか (1954) の白金沢砂岩層下部、吉田・神戸 (1955) の佐久層中部、本山ほか (1991) の氷ノ沢層中部に相当する (Fig.2)。
（分布）松戸別川上流、芦別川上流
（層厚）下限不明、少なくとも100m以上
（岩相）主にスラブ構造の発達した砂岩帯を流れる砂岩層が互層をなす。砂岩層の厚さは15～100cmで、明灰色で細粒～中粒。泥岩層の厚さは5～15cmで暗灰色である。砂岩層の中には亜目と一部を含む方が認められ、南北方向の主流流を示す。これは田中・角 (1981) が示した堆積池の証言を方向と調和的に、泥岩中には石灰質模様が多く観察される。
（化石）石灰質模様から、アンモナイト類10種、イノセラムス類1種が多産する。アンモナイト類では、Neoptyctloceras subramosum Spath, Anagaudryceras sp, Gaudryceras densepsicatum (Jimbo), Tragodesmoceroides subcostatus Matsumoto, Mesopuzosia pacifica Matsumoto, Scalarites scalaris (Yabe), Eubrychoceras japonicum (Yabe), Muramontoceras sp., Scaphites planus Yabe, Yezoites sp.が産出する (Figs.6C, 7C)。イノセラムス類では、Inoceramus (Inoceramus) teshioensis Nagao and Matsumotoが産出する (Figs.6C, 7C).

1-2. 岩相ユニット Mi 本ユニットは、Matsumoto (1942) の II s、長尾ほか (1954) の白金沢砂岩層下部、吉田・神戸 (1955) の佐久層上部、本山ほか (1991) の氷ノ沢層上部に相当する (Fig.2)。
（分布）松戸別川中流、芦別川中流
Fig.4. Columnar sections of the Cretaceous deposits in the Ashibetsu Lake area. Inlet map showing the measured intervals. Numbers 1 to 6 refer to the columnar sections 1 to 6.

上部（論頭番号 As9123 の相当層準、Fig.6C）からは、Mylilotus incisus（Umbra）が産出する。

2-1. 岩相ユニットUa 本ユニットは、Matsumoto
(1942) のⅢ a，長尾ほか（1954）の糸井外広等記岩層，吉田・神戸（1955）の上部磐田群下部層，本山ほか（1991）の鹿島層下部に相当する（Fig.2）。＜分布＞箱根別川流，芦別川中流。
＜層厚＞箱根別川で170m，芦別川で260m。
＜関係＞下位の中部磐田層がノ沢層に整合で重なる。
＜岩相＞主に暗灰色，塊状，硬質泥岩からなる。下位の中
部磐田層群の泥岩層が消減し，塊状の泥岩が始まる
ところをもって本ユニットの下限とする（岩相番号As8133，
Fig.5）。概して生物擾乱が弱く，変成が保存されている，石
灰質団塊は極めて少なく，化石の産出は稀である。
＜化石＞アンモナイト類の産出が乏しく，Anagnostoceras
limatum，Damesites sagataのみ産出する（Fig.6C）。
イソセラス類については2種が産出し，基本岩（岩相番
号As9121の相当層準，Fig.6C）から中部（岩相番号As9117
の相当層準，Fig.6C）までMytiloides incertusが，その上
位90m（岩相番号As9109の相当層準，Fig.6C）からInocer-
ramus（Inoceramus）wajimensis Yeharaが産出する。

2-2. 岩相ユニット Ub 本ユニットは，Matsumoto
(1942) のⅢ b～Ⅲ c，長尾ほか（1954）の氷ノ関戸状灰質砂
岩・頁岩層下部，吉田・神戸（1955）の上部磐田層群上部層
下部，本山ほか（1991）の鹿島層中部に相当する（Fig.2）。＜分布＞箱根別川流～中流，芦別川中流～下流。
＜層厚＞上流不明，少なくとも600m以上。
＜関係＞下位の岩相ユニットUbに整合で重なる。
＜岩相＞主に細灰色，塊状，軟質泥岩からなる。下位の中
部磐田層群の泥岩層が消減し，塊状の泥岩が現れる
ところをもって本ユニットの下限とする（岩相番号As8133，
Fig.5）。概して生物擾乱が弱く，変成が保存されている，石
灰質団塊は極めて少なく，化石の産出は稀である。

Fig.5. Locality map of the Ashibetsu Lake area. The prefix As8 for each locality number in the So-Ashibetsu River and As9 in the Ashibetsu River are omitted, except for some localities.
Table 1. List of ammonoids in the Ashibetsu Lake area. The prefix A as for each locality number is omitted, y: floated specimens from the locality. (), cf.

<table>
<thead>
<tr>
<th>species</th>
<th>Takinoawa Formation</th>
<th>Kushimo Formation</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Mb</td>
<td>Ms</td>
</tr>
<tr>
<td>Neoplyctoceras subramosum</td>
<td>8155</td>
<td></td>
</tr>
<tr>
<td>Anagadryceras leptinum (Yabe)</td>
<td>8143, 9123</td>
<td></td>
</tr>
<tr>
<td>Anagadryceras sp</td>
<td>9131</td>
<td></td>
</tr>
<tr>
<td>Gaudyceras reniformis</td>
<td>Yabe</td>
<td></td>
</tr>
<tr>
<td>Gaudyceras densiplicatum (Jimbo)</td>
<td>8155, 9129</td>
<td></td>
</tr>
<tr>
<td>Gaudyceras sp</td>
<td>8155</td>
<td></td>
</tr>
<tr>
<td>Tetraceras gladius (Jimbo)</td>
<td>8155y, 8115y</td>
<td></td>
</tr>
<tr>
<td>Mesopusosoria pacifica</td>
<td>Matsumoto</td>
<td></td>
</tr>
<tr>
<td>Mesopusosoria sp</td>
<td>8155</td>
<td></td>
</tr>
<tr>
<td>Jumboceras milhoensis</td>
<td>Matsumoto</td>
<td></td>
</tr>
<tr>
<td>Yabececosaurus ootakei</td>
<td>Tokanaga and Shumura</td>
<td></td>
</tr>
<tr>
<td>Damesites dani (Jimbo)</td>
<td>8143</td>
<td></td>
</tr>
<tr>
<td>Damesites sugata (Forbes)</td>
<td>9109</td>
<td></td>
</tr>
<tr>
<td>Damesites sp</td>
<td>9129</td>
<td></td>
</tr>
<tr>
<td>Tragedemoceras subconcaudatus</td>
<td>Matsumoto</td>
<td></td>
</tr>
<tr>
<td>Yoyokumoceras sp</td>
<td>8155y</td>
<td></td>
</tr>
<tr>
<td>Eubathyloceras japonicum (Yabe)</td>
<td>8155y, 8155y</td>
<td></td>
</tr>
<tr>
<td>Eubathyloceras sp</td>
<td>8155y</td>
<td></td>
</tr>
<tr>
<td>Muramotoceras sp</td>
<td>8155</td>
<td></td>
</tr>
<tr>
<td>Scalareites andal (Yabe)</td>
<td>8155y, 8155y</td>
<td></td>
</tr>
<tr>
<td>Scalareites milhoensis</td>
<td>Wright and Matsumoto</td>
<td></td>
</tr>
<tr>
<td>Scalareites sp</td>
<td>(021y), 9031</td>
<td></td>
</tr>
<tr>
<td>Schopites pseudoaequalis</td>
<td>Yabe</td>
<td></td>
</tr>
<tr>
<td>Schopites planus</td>
<td>Yabe</td>
<td></td>
</tr>
<tr>
<td>Schopites sp</td>
<td>8155</td>
<td></td>
</tr>
<tr>
<td>Yezotoceras sp</td>
<td>8155y</td>
<td></td>
</tr>
<tr>
<td>Baculites sp</td>
<td>8155</td>
<td></td>
</tr>
<tr>
<td>Polyplacoceras sp</td>
<td>8155y</td>
<td></td>
</tr>
<tr>
<td>Ammonoceras gen et sp andet</td>
<td>8155y</td>
<td></td>
</tr>
</tbody>
</table>

Inoceramus (Inoceramus) uwayimensis が卓越して産出し、石炭質物塊だけでなく母岩からも産出する（Fig. 7B）。

上部の生物擾乱の強い泥岩部からはアモンアイ類が16種、イノセラム類が4種得られた。アモンアイ類では、Neoplyctoceras subramosum, A leptinum, Gaudyceras densiplicatum, Tetraceras gladius (Jimbo), Mesopusosoria pacifica, Membranoceras yubaremions (Jimbo), D sugata, Scaphitites pseudoaequalis Yabe が主に産出し（Figs. 6A, C, 7A）。

イノセラム類ではI. (I.) uwayimensisが連続的に産出した。

I. (Cordiceramus) kawashtaii Noda, Sphenoceramus naumantii (Yokoyama) が産出す（Figs. 6A, C, 7A）。

最上部からはI. (Plathyloceras) amakusensis Nagao and Matsumoto が産出する（Fig. 7A）。

時代対比

本論では、利光ほか（1995）に準拠し、アモンアイ・イノセラム類に基づく時代対比を行った。その結果、本調査地域の自旋縁は上部チューロニアン階からサントニアン階に対比された。なお、本論文中に用いるイノセラム化学値の差異の生存区間が不明であるため、本論中では便宜上3つの特定タクソンの産出最下限の層の層序断面（最下限産出層、日本地質学会誌編，2001，p 64）として定義する。以下、総合柱状図と大型化石の総合レンジチャート（Fig. 8）とともに、その詳細を論じる。

1. 上部チューロニアン階

上部チューロニアン階の基底は、(1) Romaniceras deviratum (d'Orbigny) の初出、(2) Subbrococalyx neptuni (Gemitz) の初出で定義する2つの見解がある（Engstrom, 1996）。しかしながら、Wiese and Kaplan（2001）は、両種の初出が時間面と糸を明かにし、中部/上部チューロニアン階境界の定義の再検討の必要性を述べている。
<table>
<thead>
<tr>
<th>Table 2. List of inoceramids in the Ashibetsu Lake area. The prefix As for each locality number is omitted; y: floated specimens from the locality. (): cf.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Species</td>
</tr>
<tr>
<td>---------</td>
</tr>
<tr>
<td>Inoceramus nakaii (Nakai and Matsumoto)</td>
</tr>
<tr>
<td>Inoceramus kawashita</td>
</tr>
<tr>
<td>Inoceramus milioides</td>
</tr>
<tr>
<td>Inoceramus usaginensis Yehara</td>
</tr>
<tr>
<td>Inoceramus nitidior</td>
</tr>
<tr>
<td>Inoceramus usaginensis</td>
</tr>
<tr>
<td>Inoceramus nitidior</td>
</tr>
<tr>
<td>Inoceramus sp.</td>
</tr>
</tbody>
</table>

本調査地域において、満ノ沢層の岩相ユニットMhおよび満の沢-鹿島間層の境界から下位約60m、すなわち満ノ沢層の岩相ユニットMi最上部付近で*T. testudinis*産出する。*M. incertus*は岩相ユニットMi最上部からUa中部まで産出す。

したがって、岩相ユニットMhからMi上部までが市光ほか（1995）の(T. testudinis带（上部チューロニア階）に、岩相ユニットMi最上部からUa中部までが市光ほか（1995）のM. incertus带（上部チューロニア階）に、それぞれ対比される（Fig.8）。

2. コニアシアノ階
チューロニアノ/コニアシアノ階境界は汎世界的に産出す*Inoceramus (Crenoceras, Crenoceras)* (sensu Tröger non Fiege)の初出で代表される（Kauffman et al., 1996）。

日本におけるコニアシアノ階はMatsumoto（1984）により北海道帯別地域において模式的な層序が示された。すなわち、*Forrestieria* (Barleite) petrociornis带（下部）、*F. (Forrestieria) alluaudi*带（中部）、Parataxantites orientalis带（上部）の3アンモナイト帯に区分される（市光ほか、1995）。イノセラムス類では、従来*I. (Inoceramus) usaginensis*帯（下部）と*I. (Cr.) mihoonsis*帯（上部）とに分带されていた（市光ほか、1995）；Matsumoto and Noda（1985）は北海道帯別地域の標準をもとに*I. (Cr.) rotundatus*を記載し、同種が日本においても下部コニアシアノ階の指標種とすることが確認した。Noda（1996）およびNoda and Matsumoto（1998）は、海外で中部コニアシアノ階の指標種としている*I. (Voluceras) koeneni* Müllerが日本産で確認し、日本における同一のコニアシアノ階の指標種とする可能性を示唆している。

本調査地域において、岩相ユニットUa中部から岩相ユニットUb上部まで*I. (I.) usaginensis*帯産出する。また、岩相ユニットUb中部から上部まで*I. (Cr.) mihoonsis*、*I. (Cordiceramus) kawashitaei*が産出する。*I. (Cr.) mihoonsis*および*I. (Co.) kawashitaei*は上部コニアシアノ階帯指示種とされている（市光ほか、1995）。

したがって、岩相ユニットUa中部からUb中部までが市光ほか（1995）の(I.) usaginensis帯（上部および中部コニアシアノ階）に、岩相ユニットUb中部から上部までが(I.) kawashitaei帯（上部コニアシアノ階）にそれぞれ対比される（Fig.8）。本地域の(I.) usaginensis帯はおそらく(I.) rotundatus帯（下部コニアシアノ階）を含むものと考えられる。

3. サントン階
サントン階はアンモナイト類のTexasites (s. s.)やイノセラムス類の*Inoceramus (Cladoceras) undulatoplicatus* Roemerの出現により区分されていた（Birkelund et al., 1984）。しかし、近年ではTexasites (s. s.)の初出はI. (Cl.) undulatoplicatusの初出よりも下位にあることから、コニアシアノ階として認められるイノセラム

NII-Electronic Library Service
Fig. 6. Stratigraphic distribution of ammonoids and inoceramids in the Ashibetsu River section. For Loc no., meaning horizon number in this figure, refers to Fig. 5. See Fig. 4 for legend and the columnar section number. Solid circles occurrence of each species. White circles, occurrence of incomplete specimens referred to the species. Number in circles number of individuals. Bivalves are not counted Ashibetsu River and As9 in the Ashibetsu River are omitted, except for some localities.
ス類と共産することから、サントニアン階基底を示す指標とはみなさないことになっている（Lamolda and Hancock, 1996）。

日本におけるサントニアン階は、下位より Texanites (Texanites) collignoni 帯、T (Plesiotexanites) kawasaki - T (P) pacificus 帯の 2 帯に区分される（利光ほか、1995）。Inoceramus (Platyceramus) amakusensis は上記のアンモナイト類と共産することから、サントニアン階の帯指示種とされている（Toshimitsu, 1988；利光ほか、1995）。これらの意見に従い、本論では I (Pl) amakusensis の初出をもってサントニアン階の下限としておく。

本調査地域の岩相ユニット Ub 最上部において I (Pl) amakusensis が産出するため、この部分は利光ほか（1995）の I (Pl) amakusensis 帯（サントニアン階）に対比される（Fig.8）。松本・岡田（1973）は本調査地域にはサントニアン階が分布していないと解釈していたが、本研究によって本階が分布していることが明らかとなった。
芦別湖地域におけるアンモナイト化石群の特性

本研究により明らかになった芦別湖地域の層序と地質時代に基づき、ここから産出したアンモナイト化石群の産出種数や産出頻度の変遷と古環境について議論する。

I. アンモナイト類の種数および産出個体数の変動

芦別湖地域では、岩相ユニット Mh から Ua までは比較的単調な地質構造であるが、岩相ユニット Ub は波状疊曲構造を示す（Fig.3）。そのため、地層の露出面積の違いが化石の産出個体数に影響を及ぼすと考えられる。調査範囲（芦別川・想芦別川）におけるルート上に露出している岩相ユニットの総距離は、岩相ユニット Mh が約 510m, Mi が約 1110m, Ua が約 1000m, Ub が約 10120m である（Figs 5, 9A）。最も露出距離の短い岩相ユニット Mh に対する各岩相ユニットの露出距離の比を求めると、岩相ユニット Mi が 2.18 倍, Ua が 1.96 倍, Ub が 19.84 倍となる（Fig.9B）。そこで、各岩相ユニットのアンモナイト類の合計産出個体数（Fig.9C）を上記同様の各岩相ごとで割った（Fig.9D）。これにより、概ね各岩相ユニットにおける単位露出面積あたりの産出個体数の近似として扱うことが可能となる。ただし、後述する平均堆積速度を試算する際に Inoceramus (Platyceras) amakusensis 帯（サントニアン階）を除外して計算しているため、I (Pl) amakusensis 帯から産出したアンモナイト類については除外している。

また化石の産出個体数には、堆積速度の増大による疊層の希釈効果（安藤・近藤, 1999）が影響している可能性もある。そこで、Hardenbol et al. (1998) による年代値に基づき、芦別湖地域の平均堆積速度を試算した。本研究では、Inoceramus (Inoceramus) teskowoensis 帯の下限、すなわち中部チューロニアン階の下限、すなわち上部チューロニアン階の下限を認定していない。しかし、松本・岡田（1973, fig 12）によると想芦別川ルートにおいて、調査範囲直下の層準まで Inoceramus (Inoceramus) hobetsensis 帯（中層チューロニアン階）が認められていることから、本研究では I (Pl) teskowoensis 帯のほぼ全ての層準が調査範囲内に含まれていると解釈できる。また、本調査地域の I (Pl) amakusensis 帯（サントニアン階）は下限のみ（1層準）しか露出していない（上限を確認できない）ため除外した。

上部チューロニアン階（I (Pl) teskowoensis 帯～Mytilodes incertus 帯）の層厚が約 467m, コニアシアン階（Inoceramus (Inoceramus) wuajimensis 帯～Inoceramus (Cordiceramus) kawashitaes 帯）が約 733m であること
<table>
<thead>
<tr>
<th>Fo.</th>
<th>Unit</th>
<th>A</th>
<th>B</th>
<th>C</th>
<th>D</th>
<th>E</th>
<th>F</th>
<th>G (F)</th>
<th>H</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Goddess</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Ubbub</td>
<td>10120</td>
<td>19.84</td>
<td>149</td>
<td>7.51</td>
<td>231</td>
<td>1</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Uua</td>
<td>1000</td>
<td>1.96</td>
<td>8.08</td>
<td>289</td>
<td>1.25</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Mii</td>
<td>1110</td>
<td>2.18</td>
<td>3</td>
<td>1.38</td>
<td>334</td>
<td>1.45</td>
<td>2</td>
<td>7.5</td>
</tr>
<tr>
<td></td>
<td>Mnh</td>
<td>510</td>
<td>1</td>
<td>36</td>
<td>36</td>
<td>334</td>
<td>1.45</td>
<td>2</td>
<td>52.2</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Inoceramid Zone</th>
<th>Stage</th>
</tr>
</thead>
<tbody>
<tr>
<td>Coniacian</td>
<td>65.79Ma</td>
</tr>
<tr>
<td>M. incertus</td>
<td>69.95Ma</td>
</tr>
<tr>
<td>Upper Turonian</td>
<td>90.30Ma</td>
</tr>
</tbody>
</table>

Fig. 9. Abundance of ammonoids in each unit in the Ashihetsu Lake area. Time scales of Hardenbol et al. (1998) are adopted. A: total exposed distance along the Ashihetsu and So-Ashihetsu Rivers (m); B: a ratio of A per total exposed distance of unit. C: total individuals of ammonoids obtained through our field survey. D: number of individuals of ammonoid per the unit area (= C/B). E: sedimentation rate (m/m.y.). F: a ratio of E per sedimentation rate of unit. Ub: standard individual number (= D x F). H: number of species obtained through our field survey.

Damesites sugata のみが産出する（Fig. 8）．(3) Ub では, 15 種, 標準産出個体数7.5で, 種類および産出個体数が増加する．ただし, 古記の計算では, 各ユニットの岩相の違い, すなわち砂岩泥岩等の変化などに関して考慮していない．仮にこれらのことを考慮すると, 各ユニットにおける標準産出個体数の差はより顕著になることが予測される。

2. 岩相と化石産出様式

岩相ユニット Mnh および Ub では, 生物擾乱を強く受けた泥岩相が発達しアンモナイト類の種類および産出個体数とも豊富である．一方, 岩相ユニット Mi および Uua では葉理の保存された, もろもろ生物擾乱の弱い泥岩相が発達している．泥岩相の生物擾乱が弱いこのような地質層は, 当時泥底に貧酸素環境が広がっていたことを示している（例えば, Savrda and Bottjer, 1991）．また, 早川（1990）は北海道西部小平-千豆別地域における Inoceramus (Inoceramus) uwaigemensis の産状と堆積面の関係から, I (1) uwaigemensis が海底の溶酸素量の少ない環境下で適応していたことを明らかにした．彼は, 泥岩中での他の化石および共存しないI (1) uwaigemensis の産状が貧酸素環境を示すと述べている．岩相ユニット Uua でも I (1) uwaigemensis が産出し, 他の大型化石にはあまり共存しない産状が観察された．したがって, 岩相ユニット Mi および Uua, すなわち Inoceramus (Inoceramus) teshiroensis 帯上部～I (1) uwaigemensis 帯下部（上部チュロニア層～ユニオシン層下部）では一時的に貧酸素環境が広がったためにアンモナイト類の種類および産出個体数が減少したことが示唆される．また, 南方の大夕張地域における同層準においても同様に, 軟体動物化石の産出が乏しい（Matsumoto, 1942; Kawabe, 2000）．一般に蝦夷海盆における白亜紀後期（チュロニア層以降）の泥底は oceanic anoxia が緩和されたために生物擾乱が活発で, 底生生物に富んでいたと考えられている（Maeda, 1987, 小畑ほか, 2002 など）．したがって, 蝦夷海盆の沖合に位置する芦別湖-夕張地域には, アンモナイト
類の種数および産出個体数の少ない食藻素環境が一時的に広がっていた可能性がある。

小平・谷口地方では、I (I) uweimensis が他の化石
とあまり共存しない層相。すなわち食藻素環境下と考えられる
層相で Anagaudryceras lamata。Damesites 層が少
ないながらも産出している（早川, 1990, fig. 6）。同様に、北
海道北部十勝川中流域においてもやや溶存藻類の少ない環
境であったと考えられる層相から A lamata が産出し
ている（高橋ほか, 2003, fig. 5, table 2）。本調査地域においても
A lamata と Damesites sugata は、アンモナイト類の種
数および産出個体数が少なく食藻素環境が拡大したと考えら
れる層相（岩相ユニット Mh Ia）と糖から回帰的に産出してい
る。したがって、A lamata と D sugata は、多くのアンモナ
イト類が棲息し難い環境下でも適応的に棲息することが
でき、他アンモナイト類とは異なる生態系（海洋の底層分
布、食藻素環境に対する耐性など）であった可能性が考え
られる。

まとめ

芦別地方の地質学的、層序学的調査を行い、以下に結果
を得た。

1. 芦別地方の白亜系は南方に位置する大夕張地域で確
立された層相区分がほぼそのまま適用できる。しかし、白亜
層は存在せず、中部安東層相中部の猿沢層の上部に上部安東
層相下部の猿沢層が直接接する。層相は、Mh、Mと、Ua、
Ubのそれぞれ2つの岩相ユニットに細分化される。

2. 岩相ユニット Mh は主にスラブ構造の発達した砂岩
泥岩互層からなる。岩相ユニット M や泥岩壁立砂岩互層
からなり、厚さ 30 〜 80cm ほどの白色凝灰岩層を頻繁に
挟む。

3. 岩相ユニット Ua は泥岩の保存された泥岩からなる。
岩相ユニット Ub は生物擾乱の弱い泥岩もしくは泥岩状の泥岩
からなり、厚さ 1cm ほどの白色凝灰岩層を頻繁に挟む。

4. 猿沢層から猿沢層にかけて、ほぼ連続的にアシナナ
イト・イシラス層類が産出する。これらに基づいて、岩相
相で顕著なアシナナイト・イシラス層類が産出する。

5. 安東層相の種類および産出個体数は岩相ユニ
ット Mh, Ub で多く、岩相ユニット Mh, Ub で少ない。

6. 岩相ユニットの沖合に位置する芦別地方では、後期ブ
ーロニアン期〜コニアニア期に一時的に食藻素環境が
広がったために、アンモナイト類の種類および産出個体数が
減少したと考えられる。

謝辞

本研究を進めるにあたり、重田康威博士（科博）、早川浩
司博士（三笠市南）、加納 学氏（三笠市北）、髙橋信司博士
（九大）から懇切丁寧なご助言をいただいた。川辺友次博士
（早大）、和田良二博士（科博）、高橋昭紀氏（早大）および
関東山荘の学生諸氏には、現地調査のご協力をともに、有
益な議論をしていただいた。査読者の安藤寿男助教授（東大,
前崎雄男教授（京大）および担当編集委員の利光誠一博士
（産総研）には、多くの有益な指摘と建設的なご指摘を頂
き本論を改善することができた。現地調査においては、三笠市
の小林敏男・佐藤宏夫・高橋信司・木村良夫・長谷川浩二・
静子夫妻、小山加子・ひとみ姉妹には特別の便宜を囲ってい
ただいた。国際野球の入会に際しては、空知森林管理署別
当務事務所の方々にお世話になった。本研究の経費の一部は文部
省科学研究費補助金（平成1997-2000、基盤B、0138390534、
早稲田大学特定課題研究助成（平成2000、2000A-096、

文献

安藤寿男・近藤康威. 1999. 化石密生層の形成と堆積シーケンス
化石化密生層は堆積シーケンス内でどのように分布するか。−
地質学論, no 54, 7-28

Bergström, P., 1990. The Turonian stage and substage boundaries In Raw-
son, P. F., Dhouli, A. V., Hancock, J. M. and Kennedy, W. J. eds.,
Proceedings, “Second International symposium on Cretaceous Stage
Boundaries”. Burrells 8-16 September 1995, Bull. Inst Roy Soc Nat Belge-

Burckhardt, T., Hancock, J. M., Hart, M. B., Rawson, P. F., Remane, J.,
Robaszyński, P., Schindl, P. and Surlyk, F., 1984, Cretaceous stage
boundaries − Proposals Bull Geol Soc Denmark, 33, 3-20

Dhouli, A. V., 1992, Cretaceous molariums biostratigraphy a review
Palaeoecology Palaeontolatique Paléopolis, 92, 217-232

Hardenbol, J., Thevenin, J., Farrelly, M. B., Jacqueum, T., De Graciansky,
P. C. and Vail, R. R., 1988, Cretaceous chronostratigraphy In De Gracian-
sky, P. C., Hardenbol, J., Jacqueum, T. and Vail, P. R. eds., Mesozoic
and Cenozoic sequence chronostratigraphic framework of Europe
anthern, Spec Publ SEPM, no 60 (Chart)

早川浩司, 1990, 化石密生層構造形態形成年代と堆積シーケンスに
いて − 北海道上部安東層相（上部白亜系）から産出する Inoceram
us uweimensis Yelena を例にとどめ。化石, 48, 1-16

平野弘道, 安藤寿男, 平野正人, 森田利仁. 石川 亭, 1980, 北海道大
夕張地域南部の化石シーケンス学的研究 第 5 部 岩相分類と地質構
造, 北海道教育書, 23, 37-46

平野弘道・安藤寿男・平野正人・森田利仁. 石川 亭, 1981, 北海
道夕張地域南部の化石シーケンス学的研究 第 2 部 化石層序, 北海
道教育書, 30, 33-45

Hinano, H., Matsumoto, T. and Tanabe, K., 1977, Mid-Cretaceous stratig-
trophy of the Oyubari area, central Hokkaido Palaeoecology Palaeo-
tolatique Paléopolis, no 21, 1-16

stage and substage boundaries In Rawson, P. F., Dhouli, A. V., Hancock,
J. M. and Kennedy, W. J. eds., Proceedings, “Second Interna-
tional symposium on Cretaceous Stage Boundaries”. Burrells 8-16 September 1995, Bull. Inst Roy Soc Nat Belge-
quins, Sci Terre, 66, Suppl, Brussels, 81-94

Kawabe, F., 2000, Cretaceous Stratigraphy in the Oyubari area, central
Hokkaido, Japan Bull Nat Sci Mus., Tokyo, Special C, 26, 9-56

川井 久雄, 平野弘道, 高木 幸也, 1996, 北海道大夕張地方構造の上
部層序と古環境気候。地質学, 108, 369-384

Lamolda, M. A. and Hancock, J. M., 1996, The Santonian Stage and sub-
stages In Rawson, P. F., Dhouli, A. V., Hancock, J. M and Kennedy,
W. J. eds., Proceedings, “Second International symposium on Cre-
taceous Stage Boundaries.” Burrells 8-16 September 1995, Bull. Inst Roy Soc Nat Belge-
quins, Sci Terre, 66, Suppl, Brussels, 56-
102

Maeolo, H., 1987, Taxonomy of ammonites from the Cretaceous Yezo
Group in the Tappu area, northwestern Hokkaido, Japan. Trans
Proc Palaeontol Soc Japan, N S, no 148, 280-305
松本道郎，1999，日本白垩系層序的基礎的研究所報（その2）。地質雑,
46, 296-297.
Matsumoto, T., 1942, Fundamentals in the Cretaceous stratigraphy of
Japan Part I. Mem Fac Sci Kyushu Imp Univ, Ser D Geol, 1,
129-280.
Matsumoto, T., 1950, Zoology of the Upper Cretaceous in Japan and adja-
cent areas with special reference to world-wide correlation. Congr
Geol Intern XX Session, Mexico, 1956, Symposio del Cretaco,
347-381.
Matsumoto, T., 1977, Zonal correlation of the Upper Cretaceous in Japan
Palaeontol Soc Japan, Spec Pub, no 21, 63-74
Matsumoto, T., 1984, The so-called Turonian-Coniacian boundary in
Japan Bull Geol Soc Denmark, 33, 171-181
Matsumoto, T. and Noda, M., 1980, Restudy of Inoceramus victorius
Jento with special reference to its biostratigraphic implications Proc
Japan Acad, Ser B, 59, 109-112
Matsumoto, T. and Noda, M., 1986, A note on an inoceramid species
(Bevalia) from the Lower Coniacian (Cretaceous) of Hokkaido
Trans Proc Palaeontol Soc Japan, N S, no 140, 263-273
松本道郎・岡田博有, 1973, エゴ地層の外縁の佐久層について。九大理研報
(地質), 11, 275-309.
本山 功・藤原 治・宿保邦夫・家田 隆, 1991, 北海道大夕張地域の
白亜系の層序と石灰質凝灰岩年代地質雑, 97, 507-527.
長尾剛一・小山内昭・植松順彦, 1964, 5 分の1 地質図取」大夕張
および同附書, 北海道開発局, 板橋, 121p.
日本地質学会調査, 2001, 地層層序ガイド —層序区分・堆積法・手順
へのガイドー, 共立出版, 東京, 238p.
西田民雄・松本道郎・米谷信雄・花川 俊・八尾 昭・久間裕子, 1993a, 北海道大夕張地域白亜系のセノマニア階大型化石—微化石
統合層序—特にその上下限の検討—その1 佐賀大学教育学
部研究論文集, 41, 11-57.
西田民雄・松本道郎・米谷信雄・花川 俊・八尾 昭・植松一
明・川下由太郎・久間裕子, 1995, 北海道大夕張地域白亜系のセノ
マニア階大型化石—微化石統合層序—特にその上下限の
検討—その2 佐賀大学教育学部研究論文集, 42, 179-199.
西田民雄・松本道郎・八尾 昭・米谷信雄, 1993b, 北海道丹別川
流域白亜系セノマニア階の巨石化—微化石統合層序を目的
として特にC-T 層界を含めてい。佐賀大学教育学部研究論文集,
40, 95-127.
Noda, M., 1984, Notes on Mystiosites victorius (Cretaceous Bevalia) from
the Upper Turonian of Pombetsu area, central Hokkaido Trans
Proc Palaeontol Soc Japan, N S, no 136, 455-473
Noda, M., 1996, Five inoceramids (Bevalia) from the Upper Cretaceous
of Hokkaido with some phylogenetic and taxonomic considerations.
Part 1 Introductory remarks, method and systematic description
of one species of Inoceramus (7) and one of G (Galeoceramus) Trans
Proc Palaeontol Soc Japan, N S, no 184, 555-570
Noda, M. and Matsumoto, T., 1998, Paleoecology and stratigraphy of the
moceramid species from the mid-Turonian through upper MIDDLE
Coniacian in Japan Acta Geol Polonica, 48, 435-482
Okada, H., 1983, Collation orogenous and sedimentation in Hokkaido,
Japan In Hashimoto, M. and Uyeda, S., eds, Accretion Tectonics in
the Circum-Pacific Region, Terra Sci Pub, Tokyo, 91-105
Savrida, C. E. and Bottiger, D. J., 1991, Oxygen-related bioclasts in marine
strata: an overview and update In Tyson, R. V. and Pearson, T. H
eds., Modern and Ancient Continental Shelf Analyses, Geol Soc.
Spec Pub, no 58, 201-219
高橋昭紀・平野弘道・佐藤隆司, 2000, 北海道天塩中川地域上部白亜
系の層序と大型化石群の特性。地質雑, 109, 77-86.
高橋昭紀・平野弘道・佐藤隆司, 1997, 北海道シューバル川
流域に分布する白亜系の層序と浮遊性の大孔虫化石層序。地質雑,
103, 543-563.
Takayanagi, Y., 1960, Cretaceous foraminifera from Hokkaido, Japan
Tohoku Univ Sci Rep, 2nd Ser, 32, 1-54
Takayanagi, Y. and Matsumoto, T., 1981, Recent advances in the Creta-
ceous biostratigraphy of Japan by coordinating megafaunal macro-
foraminiferal Recent Progress New Soc, Japan, 6, 125-138
田中啓助・角 靖夫, 1981, 北海道中東部白亜系の古流系。地質月報,
32, 65-127.
Toshimitsu, S., 1988, Biostratigraphy of the Upper Cretaceous Santonian
Stage in northwestern Hokkaido Mem Fac Sci Kyushu Univ, Ser
D, Geol, 26, 125-192
mega-fossil-foraminiferal biostratigraphy of the Santonian to lower
Campanian (Upper Cretaceous) succession in northwestern
Hokkaido, Japan. Oev Res, 19, 89-95
利光誠一・松本道郎・野田輝之・西田民雄・米谷信雄, 1995, 本邦上
部白亜系の大型化石—微化石層序および古地磁気層序の統合に向
けて、地質雑, 101, 19-29.
土田 聡・平野弘道, 1995, 北海道夕張地方白亜系研属地域層序の地質学的
研究 早大教育学術研究, 43, 1-14.
(Munster Basin, northern Germany) as a possible candidate Global
boundary Stratotype Section and Point (GSSP) for the MIDDLEUpper Turonian boundary Oev Res, 22, 549-563.
吉田 崇・神田信信, 1995, 5 分の1 地質図取「幾剎別岳」および町
説明書。北海道開発局, 31p.
(要旨)

北海道芦別地域の上部白亜系は沖合相からなり、中部艶夷層群上部の深ノ沢層（砂岩泥岩互層）と上部艶夷層群下部の鹿島層（泥岩層）に区分される。各層は、Mh, Mi と Ua, Ub のそれぞれ 2 つ岩相ユニットに細分される。産出するアンモナイト・イノセラムス類の大型化石層序学的研究に基づくと、チューロニアン／コニアシアン階境界は岩相ユニット Ua 中部に、コニアシアン／サントニアン階境界は岩相ユニット Ub 最上部に存在する。岩相ユニット Mi と Ua では、アンモナイト類の種数および産出個体数が少ない。これは、後期チューロニアン期～コニアシアン期前期に軟岩帯の沖合の芦別地域に一時的に石灰質環境が広がった影響によるものと考えられる。

Explanation of Plate

Plate 1 Ammonite and inoceramid fossils from the Ashibetsu Lake area. All are in natural size.
1. *Damesites sugata* (Forbes), lateral view, Loc. As8143, the So-Ashibetsu River
2. *Anagavagryceras ismatum* (Yabe), lateral view, Loc. As9109, the Ashibetsu River
3. *Mytiloides uncitrus* (Jimbo), right valve, Loc. As9117, the Ashibetsu River
4. *Inoceramus (Inoceramus) usagimensis* Yehara, left valve, Loc. As8091, the So-Ashibetsu River.
5. *Inoceramus (Cordiceramus) kawashitas* Noda, left valve, Loc. As9027, the Ashibetsu River.
6. *Inoceramus (Cremnoceramus) mhoenensis* Matsumoto, right valve, Loc. As9009, the Ashibetsu River.