Die obertriadische Molasse im Mine-Gebiet Westjapans
1. Teil Stratigraphie und Werdegang

Akira Tokuyama

(Zusammenfassung)

Im Mine-Gebiet liegen die max. 4800 m. mächtigen Mine-Schichtserien, die mit Kalkbrekzien, wie sie die Omine-Phase vertreten, angefangen. Die Mine-Serien bestehen aus (von unten nach oben): den brackischen Takiguchi-Schichten (max. 300 m. mächtig), den neritischen Hirabara-Schichten (1000~1200 m. mächtig), den limnischen Momonoki-Schichten (rund 1500 m. mächtig) und den paralischen Aso-Schichten (1500~1900 m. mächtig).

Darauf liegen die brackische Inoki- und dann die paralischen Aso-Schichten. Die Sedimentzufuhr schwächte sich zur Aso-Zeit wieder ab. Die Unterscheidung zwischen den limnischen Momonoki und den marinen oder paralichen Aso-Schichten liegt darin, dass die Bodenschwankungen des Hinterlandes für Momonoki-Schichten charakteristisch, so wie die Meeres-

美濃統の研究は巨知部忠彦・横田又次郎・井上誠之助等を端緒として、鈴木正治 (1904)・小田勉 (1922)等の著者調査、1928年東大進論の調査（これを基に小長谷晃一は美濃統を、小沢義明は厚保統を提唱した）および犬島川郎等の植物化石の調査を経て、1948年片山房の層序的研究を見た。山の平・横木・麻生の3階区分は1966年後の今日、多少境界の移動はあるにせよなお効果、前中生期河内ケ谷、Bären Insel等の動物群との比較に依する層序学的研究は高く評価される。1939年には引続き東大進論のフィールドとして厚保・久保地域が調査された。1941年小田氏の「伊佐川山崩れ」以後、美濃統は秋吉台山頂部の後造山堆積物として対照を浴び、1948年「伊佐本島地質構造論」ではモラッコとしての意義が強調された。他方長谷晃等は長門3地域の調査を行い、層序的研究の補完を行った。

1955年以後私はこれらの3地域の調査を行い、特に後造山性堆積物としての特性に着目して階層・層相の解析を試みた。小長谷氏等はそこの一部で、特に美濃地域を中心に扱い、厚保・長保地域並びに千曲層序学および古生態学等古生物的研究所については稿を改めることにした。本稿の第1部では層序として層序・造視の概要を述べ、第2部では具体的に堆積学的方法により、堆積機構と地殻運動の関係を述べ、その造視的意義に論及する。

この研究を通じ小長谷晃一・木村敏雄両氏などは終始懇切な御指導御鞭撻を賜った。またドイツのKraus教授からも有益な御助言を賜った。ここに改めて深甚なる感謝の意を表する次第である。美濃の万々特に小豆沢、松本・五間湯の諸氏を始め、宇部興産の方々は私等の調査に急も大の便宜を与えられた。また要約は山下隆・吉川浩一郎両氏に御校閲賜つ。この機会にこれに御礼を申し述べる。　

I. 層序と造視の略記

此処では主に、大崎時階 (小田、1941 等) 以後の美濃統について論ずるが、これより前の厚保期には「原秋吉帯」の旋回は未だ劣勢であり、前期（上古）、中期（熊谷）を通じて比較的平穏で厚保期には比較的掛合相が堆積したが、後期（江の河原期）に至り、原秋吉が急激に上昇し、やがて大崎時階のかななり広汎な隆起となる。堆積物に見られる限りこの上昇は表面的には非常に激しい運動であり、その結果原秋吉の大崩れが大きかったと解釈される。この時階を端に、以前地層は山地形成前半の堆積物で、大崎時階以後の「美濃統」は原秋吉帯における激しい統治的堆積運動の産産であり、これが狭義のさくら型堆積物である。その意味でここでは両者を「統」として区別することにする。美濃統はこの地域では大規模な堆積物を形成し、それぞれ山間の局所的な激しい沈降、背後の原秋吉中核帯の上昇およびその後における波動的堆積運動を示す堆積物として特徴付けられている。

層序に関しては既に片山 (1939)、長谷 (1950) 等の研究が有り、その区分は私等の多少の相違はあるが、ここには詳しい記述は略し、別表を載せるに止め、層序の記述を兼ねて美濃統の造視史を述べる。
<table>
<thead>
<tr>
<th>地層名</th>
<th>命名</th>
<th>片山（1938）</th>
<th>長谷（1950）</th>
<th>分布</th>
<th>岩相</th>
<th>主要動物化石</th>
<th>地質運動の様式</th>
</tr>
</thead>
<tbody>
<tr>
<td>三瀬砂岩層</td>
<td>片山</td>
<td>600</td>
<td>還市一領—中ノ川—藤原—三瀬</td>
<td>麻生</td>
<td>“Rhynchosoma” asensis, “R.” subflabella, Tosapecten sp., Palaeophurus sp.</td>
<td>不規則な打撃打崩れ:全体的波動 (2b)</td>
<td></td>
</tr>
<tr>
<td>小田麻生層</td>
<td>新称</td>
<td>400</td>
<td>保々ー今山—上湯口—豊田前—小田山—七所</td>
<td>麻生</td>
<td>“Rhynchosoma” asensis, R. subflabella, R. sp., Eumorphophi (Asella) 2 spp., Plagiostoma sp., Cuneigerillia sp., Chlamys mojissimovisi, Tosapecten suzuki</td>
<td>規則的完全銃形崩壊 (2b)</td>
<td></td>
</tr>
<tr>
<td>三川砂岩層</td>
<td>片山</td>
<td>800</td>
<td>保々東—湯口—三杉—清水田—石屋形—小田北</td>
<td>桃</td>
<td>Eumorphophi (Asella) sp., Chlamys mojissimovisi, Tosapecten suzuki</td>
<td>盆地の全体的波動と、小規模な一時的沈降による畳積 (2b)</td>
<td></td>
</tr>
<tr>
<td>猪木麻生層</td>
<td>新称</td>
<td>200</td>
<td>美濃西京—井川—桃木—石屋形</td>
<td>桃</td>
<td>全体的沈降とそれに反応的な小規模な上昇 (2b)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>大塚麻生層</td>
<td>新称</td>
<td>560</td>
<td>美濃豊川—井川—東町—上田の台</td>
<td>木</td>
<td>後背地の比較的緩やかな上昇 (1a)</td>
<td>規則的、簡素な運動 (1b)</td>
<td></td>
</tr>
</tbody>
</table>
| 層 | 麦川 | 新称 | 桃木層 | Mo I | 美濃東部・奥濃・飛騨山脈及び北、県境 | 火成層は比較的に良く発達する。後背地の急激な上昇により一時期に堆積した火成砂礫である。
| | | | 桃木層下部 | 380 | 砂岩・隕石砂岩・粗粒砂岩の下部と、隕石成分を含む.| 「隕石・隕石砂岩・粗粒砂岩」下部と、「隕石砂岩・隕石成分を含む」との区別が認められる。
|
| 平原層 | 上部 | 片山 (1938) | H II | 杉原・奥濃東〜平野〜白岩北 | 杉原〜砂岩〜砂岩層さき、砂質石英の互層の薄層をなし、最上部は南部から侵入があり、この付近の侵入相の岩盤が突出する。
|
| 原 | 上部 | (上部) | 原 | H II | 杉原〜奥濃東〜平野〜白岩北 | 杉原〜砂岩〜砂岩層さき、砂質石英の互層の薄層をなし、最上部は南部から侵入があり、この付近の侵入相の岩盤が突出する。
|
| 平原層 | 下部 | 片山 (1938) | H II | 杉原東〜戸川〜奥濃東〜白岩東 | 杉原〜砂岩〜砂岩層さき、砂質石英の互層の薄層をなし、最上部は南部から侵入があり、この付近の侵入相の岩盤が突出する。
|
| 沢口層 | 沢口層 a | (1938) | H II | 沢口層下部 | 沢口層下部に、砂岩層の互層をなし、南部から侵入があり、この付近の侵入相の岩盤が突出する。
(A) 厚保統序説
中下部を通じて原秋吉の活発な運動を示すような堆積物は少なく、物質の供給源地はかなり遠方にあったと思われ、かなり沖合の層相を示している。下部は地光の石灰岩および周辺の塩類質岩、中粒ないし細粒砂岩で代表される公海的な堆積物である。中部は熊倉の黑色砂質頁岩優位の砂岩と頁岩で代表され、頁岩部にはDaonella, Halobia, Oxytoma等を産し、この層量上部の砂岩部にはMine-trigoniaを産する。この期の末期に至り初めて規則的な砂頁互層を生じ、背後地山の運動が活発になったと思われる。上部川の河原期に至り、背後の原秋吉山地は急激な律動的上昇を開始し、大量の粗粒堆積物を含む浅炭層は層を形成した。各層の間は、岩石塊状砂岩→砂泥または砂頁互層を単位とし、上部には薄炭層を夾在する。この堆積層は下部2層に比し、砂岩の構成物質も著しく異なり、炭地に近く、堆積速度も急速に増したと思われる。この浅炭層の層積は厚保から厚秋にかけて広く分布しており、原秋吉山地の起伏がかなり增大したことが判る。

やがてこの運動は大規模階のやや広汎なる上昇運動を誘引し、この地域は全体的に山地となったと考えられる。

(B) 美福続
1. 淹口層 (氷水成) Brackische Takiguchi-Schichten
大湧時期後炭氷口層に山間部が形成され、最初の堆積物は祖父ヶ瀬附近の輝石岩の周辺に生じた輝石堆成と思われる輝石角礫岩で、上昇運動の末期ないし直後のものである。この上に重なる炭岩層は平原部の急激な局所的沈降に至る過渡期の堆積物と思われるが、地域にAnodontophsoraとNeocalamitesのみが見られる。全体として中粒ないし粗粒砂岩が卓越し、この中に下部に3枚の炭層と1枚の薄い炭層を有む。炭層（および頁岩夹層）の砂岩に対する厚さの比は小さく、炭層は全体的沈降に反応する一時的な小さなものに依り生じた湿地性の堆積環境に起因すると考えられる。この炭層層は後述の桃木炭層層と同様に全体的に沈降波曲にこれに対立する小さな波動の二相の堆積運動を示していると思われる。この層は北に薄くなり水位の低下時で消減する。また滝口南方では直接輝石岩の基盤を被る所もあり、また極により輝石堆層中に炭質物が堆積しており、当時の地形の変化を残している。なおこの層から多数の珪化木が発見され、大きなものは幹の径が30cmにおよび、この層に陸地が存在したことは確かである。この上に重なる堆積物は全体として稲粒砂岩で時に薄い細粒岩を含む。

2. 平原層 (浅海成) Neritische Hirabara-Schichten
粗粒物質に始り、上部細かくなり、炭質物および泥岩で終ると半湿送を3回繰返す。構成物質の殆ど全て（95%以上）は非変成岩層（山口層群のチャート、頁岩および砂岩）で占められ、また堆積物が著しく不均一で角ばっていることから、供給源地はこの堆積盆地四濱に求められる。第2部に詳述するように、厚さの変化、乱堆積等堆積物の性質から「沈降の中心」地域が設定され、この層は堆積盆地の激しい沈降の所産と推定される。化石および砂岩頁岩の性質からみてこの堆積盆地は南方に開いた湾で、北部は湖沼水、塩素質の内海の環境を示すが、南部ではかなり海流しない海水の影響を受け相間を形成に漸移する事が判る。両相の分化は明瞭でここに累積帯附近に沈降の中心が求められ、ここでは層厚は最大になる。この附近を中心とし、沈降の速い時は盛んな物質の供給を受け、堆積物も粗いか、沈降が速くなり充填作用が沈降を凌駕する堆積物は次第に細かくなり、沈降の古核層に上記の半湿送が生じたと考えられる。平野層のこのような局所的沈降運動は造山体形成後の崩壊現象と密接することができる。

1. 下部平原層 この層層は3段中最も厚く、粗粒物質の部分も最も厚く粗い。下部に厚層（頁岩・
GEOLOGISCHE KARTE DES MINE-GEBIETS

As, Aso, Ga: Gensei, Hi: Hiraoka, Ho: Hono, In: Imaya, Ii: Iihiyo-
Kota, Ku: Kusamoto, Mi: Minoya, Mo: Mominoko, Mt: Mitsuishi,
Od: Oda, Oi: Oiigase, Ok: Okubata, Om: Omine, Sh: Shiro-
a, St: Shiro-
gahara, So: Sondake, To: Toshire, Tk: Takiguchi.

Vol. 61, Pl. 11 (A. Tokuyama)
第2図 美濃続各階の模式断面図：本図は各階毎の北東一南西面図で，各階毎の層相，厚さの変化を示し，各段の発達状態を表わしている。中央の線は麻生～平原を結ぶ主要路線に当る。
かたわ・チャート、円磨度比較的良好；最大径 50 cm を持つ臓岩が 2 層あり、この上に特徴的な鋭角扇岩および塊状粗粒砂岩の不規則な層が重なる。この部分の臓岩は普通 1 cm 内外のチャート・片岩のみで時々チャートのみのこともあり、円磨度調査共に不良で層の配列も不揃いである。互層は不規則で 1 ～3 m を単位とし、臓岩から砂岩に移行するが、臓岩砂岩の比率も不定である。この粗粒部は徐降の中心附近（大塚駅南 3 km）では 250 m あるが、大塚駅附近の断面では 100 m に満たない。この粗粒層は激しい局所的沈降とその沈降部の充填による急激な堆積物と混ざることで、沈降が遅くなると共に物質も細かくなり、大塚附近の断面では粗粒部から約 15 m 上の処に炭層を含み、その後雲母片・植物片を含む層縁の砂頁互層が重なり、一時的に粒状物質が繰返し新しい後に浅海成の砂頁互層が重なる。この部分は南傾斜いが、これは南傾斜一変相になるためであることが堆積物の細粒化等により察知される。中部では Oxytoma, Palaeopharus, “Schafhautlia” 等の介化石を含む、南部では化石は稀である。

ii. 中部平原層 の輪廻はその構成物質では下部と同様であるが、粗粒部が薄く逆に細粒部が厚い。この部分から産出する化石は種類が多く、その群集の場所による変化が古生廃学的興味を引く。この層では網取か内湾の内部と海溝の南部の層相の対立が著しく、化石の変化と共に「古平原層」の性状を示し示している。単純砂岩は北部では扇泥岩の細かい基質に富んでいるが、南部では粘土質をほとんどなく、岩片粒経物の円磨海底は比較的洗浄され、更に南部では外来（多分原秋吉の構成物）と思われる安山岩片を 5% 以下含め、これはその亜流の上昇を考え、湾南西に流入した安山岩片が二次的に流れて運ばれたためであろう。

化石群集から見ると北部内湾側は "Gryphaea", Bakevillia, Palaeopharus（大きい姿の厚い型）、Schaefautlia 等で代表され、所によっては Bakevillia のみの化石堆も見える；南部側は Oxytoma, “Pteria”, Halobia 等の Pteriden-Schiefer と Minetrigonia, Palaeopharus（小さい姿の薄い型）、Cardinia 等いわゆる三角介砂岩；中部は両者の混合群で Bakevillia, Mytilus, Modiolus, Homomya, Palaeopharsus (Mephepharsus) 等を含む。

iii. 上部平原層 の半輪廻も同様に局所的沈降の影響があるが全体として（特に中部互層）三角介砂岩が卓越し、中部では随所に Minetrigonia, Bakevillia, Palaeopharus の化石堆が見られる。この上に直接は海溝の厚い臓岩が重なり、幅廻はここで中断される。いわゆる平原層後部厚岩（片山の d 層）がこれで、この厚い層でも化石群層は南から北に変化する。単純な変成だが Halobia, Oxytoma, Lima が散在する程度で、北に向い奥深方にて一時 Halobia を多産するが、Halobia はここで消滅し、その北では Oxytoma, Lima, Pleuronecites, Modiolus を多産し、原産西では Rhynchosphenon の密集した化石堆にな Pleuronecites, Lima, Modiolus を多産する。更に北約 2 km の間この層を欠くが、白岩の北では他はもやし Anodontophora しか産しない。この 1 層疎内における化石層の変化は陸からの距離または水深を示す基準として重要である。

3. 桃木層（切削）Linnische Momonoki-Schichten

麦川矢体輪廻、桃木デルタおよび大塚矢体輪廻より成り、分布・厚さの変化およびその性質から考え湖成であろう。構成物質の 85% 以上は花崗岩類、粗面安山岩を主とする火山岩類および石英片岩を主とする結晶片岩から成り、平原層の大部分を占めた非変成の山口層群のものと思われる岩片は 10%内外である。臓岩も殆ど完全に円磨されており堆壊物の供給源地は平原期におけるより遠方で求められる。この層のデルタおよび輪廻の性質は第 2 部に述べるように後世の上昇を裏付けておりデルタの性質および上昇の構成物質から古地理および原秋吉山地標準の構造の一端が観察できる。いわゆる桃木時期（小林、1941 弦）の上昇により平原側から桃木湖へと転化し、引き続き原秋吉中核から
のメナ大な粗粒物質は北北西から桃木寄に供給された。原玄武からの物質供給はすでに平地層にも古平
原域南部に潜在的であったと思われるが、桃木段階を境に急に盛んになったのであろう。桃木層のこ
のような地質運動は、表面に顕れた運動としては激しい上昇運動であるが、造山運動全体の経過から
考えると、山体形成後の地表近くの運動で例えばデッケン衝動に関係あるような運動と思われ、
Metaorogeny (小林, 1956) を経る運動であろう。

i. 麦川括層層 は湖湾湖に始まる構造のブロック粗粒砂岩の下部 (粗粒部) と "粗～中粒砂岩→
陸相砂質頁岩→頁岩～炭層の関係が10年間の層序から成る上部 (細粒部) との間を3回繋がる複
合半湖湾である (各最大100 m～120 m)。各段の層序は夫々後背地の1回の急激な上昇の産物と解
され、細粒部のやや不規則な小輪廻はこの間の不安定な地動を示している。

ii. 枝木デルタ は "デルタ相" と "周辺相" の湖湾湖から成り、部分的に前縁の堆積物と思われる
泥岩が含まれる。デルタ層は1枚の厚い三角洲層とその縁返しの小規模なものを含むが、いずれも北
に薄くなる。主要層は藤ケ内河舟に隣接し、東方向の断面では西に消滅することが知られ、河口
における斜交層 (Schrägverlayung) の観察からも西から南側に流れていたことが判り、従
って大鷲西部方向に物質の供給源地 (原玄武山地) が拡がっていたことは疑いない。周辺相の湖湾
では枝の消退は比較的良好で、各層は薄いが偏った位置に堆積して分布する。この辺は摩尔など美濃地域に
見られ、北部では略々一定の厚さを有する。また北部では枝の相が消減した後、この層の中部に薄
炭層および2 m 前後の陸相砂質頁岩を有する。デルタの前縁相と思われる堆積物は枝原の南部
に一部保存されており、ここには粗粒い中粒粗砂岩・泥岩および薄炭層がある。この水系に流れ込む
と、水の流速は急に衰え堆積物の粗粒部分はその場に落ちデルタとなるが、細粒物質および流木
等軽い物は更に前縁および周辺に運ばれてから沈む。上記の炭層および泥岩はこうしてできたもので
あるが、美濃地域ではこの種の炭層の発達は良くないが、厚狭地域に発達するほぼ同時代のデルタで
は、同種の石炭が生産対象になっていている。

iii. 大鷲凹炭層堆層層 は枝川式輪廻に比べ小規模で層順も単純である。即ち、礫質砂岩→砂泥互
層・泥質岩→炭層および頁岩及び砂泥互層の順で各輪廻は微不整合 (Diastem) で明瞭に区切られ
、最上部の砂質互層はしばしば割り取られており、また基底面には起伏が多い。輪廻は枝川のもの
よりも規則的で整っており、堆積物を制御した後背地の運動も似たものであったが、また輪廻間
の組成物の変化から後背地の上昇運動が局地化し、小地域の上昇に変化したと思われる。

枝木層を通じ、輪廻層とデルタ堆積層が密接に結び付いていることが注目される。これは厚狭地域
において更に顕著であり、ここでは赤岩互層の輪廻 (枝川式) と井手上の三角洲は判然と区別できない
層でもある。三角洲を作った運動と輪廻を統御した運動は、従って同種の運動と思われ、恐らくその
相違は運動の激しさに基づくのであろう。

4. 麻生層 (畑海岸) Paralitische Aso-Schichten

堆積物は一般に均質粗粒砂岩で、この間に透き通る炭層や海成頁岩等の薄層が夹在する。堆積物
層を下ろする地質運動はこの間に至り堆積盆地の波動現象に変化した。原平層には急激な局所的沈降、
枝木層には背後山地の堆積的上昇が支配的で、両者は一変一方的な運動であったが、麻生層には、沈
降・上昇を伴う波動が支配的でかつ激しさも弱まった。麻生層には2回の大きな波動およびこの間の
小刻みな波動ないし汀線の南非の2種の運動が識別できる。前者により岩炭層および海成層が3回繋
返し、枝木炭炭層 (海水性) ≪−三層砂岩 (浅海性) ≪−小田炭炭層 (瀬戸海性) ≪−三層砂岩 (瀬戸深海性)
の層順ができた。小田層および三層層中の炭層の上下に陸成層に接して淘汰不良の著しい粗粒砂岩層
が認められる。これは陸成・海成の推移性に似た似い海の産物で、穏やかな波動現象を示すと
徳山明

思われる。この層はかなり広く分布し、しばしば浅海棲の介を含んでいる。一方治層にみられる炭層または海成海成頁岩等細粒物質の薄い夾層は微妙な波動により一時に堆積環境が変化したことを示している。

i. 猪木夾炭層 は陸成の桃木階から海成の三杉階に移る沈降の過程に生じた気温の変化に伴い、その特性は浅海層に似ているが、深層（および頁岩の夾層）の頁岩に対する比は1/25以下である。因みに桃木の場合は1/5〜1/15位である。炭質は良くはないが、南部美豊から石屋形の北まで連続している。

iii. 三杉砂岩 は猪木階の沈降が極点に達した後の堆積物で、海成層の厚い頁質頁岩ないし頁岩互層に始まり、約750 mの始め厚い頁質砂岩中に数層上記と同様な細粒の2〜3 mの薄い層を数枚夹む。この変成は南部厚さを増す倾向があり、かつ細粒になり沖合相を示し、盆地の中部では多々の変質から Tosyacten を産出す。更に北部では陸成の泥質砂岩に移る。この層を通じ海深はほぼ一定である。時折の規模の波動により変化するとときに細粒層の変成堆積したものと解釈される。最上部は上述の浅海成の沈降不良の粗い砂岩で割れ、Lima, Chlamys, Cuneigervilia "Gryphaea"等を産出する。

ii. 小田間炭層 には3枚の炭層およびこの間に夹まった2枚の海成層が含まれ、完全廃絶性の性質を示している。即ち炭層から次第に深くなり、Eumorphotis, Rhynchonella 等を含む公海的な相を極点として、再び浅くなって炭層となり、この間に Anodontophaora 等植物片を含む砂岩相と思われる頁岩を産む。炭層は南に向い炭質頁岩→合芸頁片雫泥質頁岩に漸移し、炭層は今山・採取附近で消滅する。また上部の炭層については興味あることは、海成層から陸成層に移る途中に「逆互層」を伴うことがある。この期は要するに振幅の広い規則的な変形で特徴づけられる。

iv. 三杉砂岩 は三杉砂岩と大略近似の性質を持つ。この期は三杉階と同様の著しく粗い砂岩を以て始まり、一時沈下し、細粒層を夹み、上昇して薄い炭層を生じ、その後再び緩い沈降が起こり、数枚の細粒層を夹む。細粒層は時に化石を産するが、Rynchonellen頁岩が最も沖合相である。堆積環境は三杉・小田間階と本質的には異ならない、従って環境は両者より不規則で散漫である。

三杉層に関する限りこの上に続く地層は削除されておりその後の構造史を解く手かかりがないが、厚層などの他の地域の類似から、この波動は norisch の大樫を導き、その後 Rhät の豊ヶ郡層の広域層にこのような地方では秋吉造山輪廻は終息したと考えられる。

II. 美濃層の構成物質と供給源地

平原層と桃木・麻生層層はその構成物質の点で明瞭な対照を示している。前者は堆積物の構成物の量比*を示すが、この図で判る通り、平原層はその大部分の源を美濃四近の山口層群に求めることができ、桃木・麻生層層の構成はほとんど花崗岩質頁岩、粗面安山岩を主とする火山岩および石英片岩を主とする結晶片岩類で、何れも美濃四近にその母岩は存在しない。花崗岩類は曹長石・輝斜長石を有し、顕微鏡的には駆動における鉱化に大別した類似した性質を持っている。粗面安山岩は、藩田(1941)が報告したのと同じもので、長石は粗面岩様の微構造を有し、輝石に輝菱輝石が認められる。結晶片岩類は豊ヶ郡附近のものより変成度が高く、石英片岩が主で、時に角閃片岩を含んでいる。結晶片岩の量比は図示のように少ないが、これは殆どが石英片岩のためで、他の綠色片岩は確隔にいたため相因の途中で失われたと考えると、供給源地で結晶片岩の占める割合は砂岩の割合よりはるかに大きくなる。ともあれこれら層の類推は現在美濃層附近に認めることはできないが駆動地域の構造の類推

* Leitz Integrationstisch 使用。
からこの地域における原秋吉台核の内部中央構造線（小林，1951）の存在を暗示している。もし然かとすれば，秋吉造山帯の構造，佐川造山帯と同様，遠心・遠開力帯を有していたことが推定でき，三郡変成岩の主脈は藤ヶ岳より更に内側に拡がっていたであろう。検木から麻生にかけて，堆積物の成分に根本的な変化はないが，全体として花崗岩带が増大し，侵食が進行していたことが判る。

後造造山期堆積物は一義的に速かな堆積速度を以て特徴付けられる。従ってその砂岩も粗く，淘汰円滑共に不良である。顕微鏡的に観察すると，結晶片岩および準軸基質が非常に少ないことが特徴的である。このことはアルプスのモラッセでも指摘されている（Habicht，1945等）。平原階の砂岩の多くは硬砂岩性質・石理を有し，その沈降盆地の機構を解釈する上に重要である。此処で砕片は非変成地質学の砂岩・頁岩・チャートで，礫物はこれらと結晶片岩の破砕されたものと看做される。検木麻生階の砂岩は普通の硬砂岩より岩片の占める量比は更に大きく普通80%以上なり，いずれも角ばっている。この砂岩では花崗岩類多くは数個の礫物片が結合したままの岩片で，礫物と看做される部分は極くわずかであっても，この花崗岩類・安山岩・砂岩・結晶片岩からのもので岩片と同一起源である。このように，モラッセの砂岩はその運搬距離が短かい易，一般に極めて「未成熟」である。

従来前造山期には硬砂岩がまた後造山期には花崗岩質砂岩が特徴的であるとされている（Pettijohn）。然し典型的後造山期堆積ではアルプスモラッセや美濃経新に見る如く，いわゆる花崗岩質砂岩とは非常に異ったもので，美濃経新末期には花崗岩類の占める割合が多くなっているが，一部は Pettijohn にみられる硬砂岩と全く同様な特徴を持つとされている。但し，モラッセの砂岩は前述の如く未成熟であるからその性質は勿論硬砂岩とはかなり相違している。また造山帯地域では大陸地域におけるとは別の分類や研究法が必要になると思われる。