Schists (garnet-biotite-schist and actinolite-schist) of unknown but Pre-Permian age from the col of Mt. Yarigatake are the oldest.

The Permian strata prevail over the eastern region from Mt. Akaiwadake to the Tokugō Pass via the Jōnen-mountain Range. They consist of slate and chert, intercalating conglomerate in the Jōnen Range and an imperfect fossil plants along the Azusagawa.

Mesozoic strata, consisting of conglomerate, breccia, sandstone, shale tuff-breccia, prevail over the east-ridge (Higashikamaone) of Mt. Yarigatake, Mt. Minamidake, the Dakezawa and the Kasumizawa. These are contact-metamorphosed by granite. The breccia is composed of quartzporphyry, andesite, chert and slate.

Mesozoic (Cretaceous) igneous rocks are quartz-porphyry, andesite and granite. A large andesite-dike intruding schists and breccia, from the peak of Mt. Yarigatake to Mt. Roppyakuzan, via Mt. Hotakadake is metamorphosed by the granite in places, especially at Mt. Nishihotakadake. Granites are hornblende-biotite-granodiorite from Mt. Ōtenjō, hornblende-biotite-granite from the Azusagawa, and biotite-granite from Mt. Nishidake. These belong to the Takase type granite of the Middle Cretaceous Province in chemical composition.

緒 言
I 地形と地質概況
II 变成岩類
III 古生層

緒 言

槍ヶ岳・穂高連峰近の地質と岩石
—日本北アルプスの地質と岩石（その2）—
柴田秀賢*・木村達明**

(1958年2月1日受理)

Geology and Petrography of the Neighbourhood of Mt. Yarigatake and Mt. Hotakadake
Hidekata Shibata and Tatsuaki Kimura

(Abstract)

* 東京教育大学
** 同附属高等学校
地質学雑誌 第64巻 第758号 1958年11月

—561—
は遺憾である。これは山岳急峻で調査困難であるためである。柴田は昭和25・27・28・29年にわたり、飛騨高原の地質の研究の一部として夏季毎年訪日する調査し、この地の地質の大略を明らかにし、30年には木村が前橋高・能治岳の細部の調査をなしたのでこの結果を発表する。

凧ヶ岳の周辺を火出する結晶片岩から昭和25年8月信州大学の小林由雄・亀井邦夫博士と柴田によって、別個に初めて発見されたのであって、この一事故をみてもこの地方の地質は従来明らかにされていなかったのである。

この調査は文部省科学研究費の一部によってなされ、また長野県森林局・松本森林局・船津森林局の御援助によって行われ、特に上高地出張所の奥村氏には非常に便宜を与えられたことに対して感謝を捧げる次第である。

I 地形と地質概説

凧高連峰は桁川と蒲田川に挟まれた山脈である。

凧高連峰を形成するのは従来砕岩と記載されたもので、旧期安山岩の大岩体からなり、その南北端、凧ヶ岳および能治岳では角礫質をなして、集塊岩・角礫岩中に貫入して、東へ70°位傾斜した岩脈状をなしているが、花崗岩で包まれて、その天端部をなすものである。大槍のピーク石英斑岩およびその角礫岩中に貫入する旧期安山岩の岩脈である。

赤岩岳から桁川に沿っては古生層の粘板岩・チャートが分布し、東北方向の走向を示す。
穂高安山岩に附帯して中生代の礫岩・角礫岩・集塊岩・巖屑岩・砂岩が分布し、柿の栗駒尾根・赤沢山・南岳・岳沢・霞沢に露出する。角礫岩は石英斑状の侵入角礫岩の場合もある。柿沢小舎裏赤沢山の絶壁も角礫岩からなる。南岳から北鉾高のキレットにかけて礫岩が分布し、花崗巖跡を含む、霞沢には集塊岩・凝灰岩が露出する。これは大正池附近で花崗岩の接触の為にホルンフェルス化する。岳沢中流東側の押出所附近のホルンフェルスは礫質岩角礫岩からなり、礫質の部分もあり、中生層と思われる。古生層中に於いて礫質の部分はあるが、礫は小さく、角礫岩である點が異る。火成岩は安山岩から石英斑岩至る複合岩体からなる集塊岩・角礫岩・岩脈からなる。化石の著せ付けはが千丈沢から北方へ続く石英斑岩は高聳型花崗岩1)に関係する石英斑岩と漸移するのでこれらの中生層は白亜紀層と思われる。

結晶片岩は柿ヶ岳東の小舎裏から中岳への下り尾根に連り、北西 N10°W 東へ傾斜し、下部は柘榴石を含む黑雲母片岩で、下部は浦田川への下り斜面に露出する陽起石片岩からなる。花崗岩質岩石は大天井岳には花崗閃緑岩の小分布があるが、他の大部は閃雲花崗岩からなる。新期安山岩は中岳および西鉾尾根千丈沢下り口附近に分布し、黑色ガラス質の角閃輝石安山岩からなる。焼岳の角閃輝石安山岩は最も新しいものである。

II 変成 岩類

柿ヶ岳東の小舎から中岳への下り尾根および浦田川への下り斜面に分布する。東側は大湖ビーグの安山岩脈に切られ、西側は石英斑岩に切られて小露出を示す。北西 N15°W、傾斜 70°E 位を示すが、小傾曲が多い。東の小舎から南鉾尾根へは柘榴石黒雲母片岩からなり、小傾曲の多い構造を示し、その荘玉は栃木に上部に多数存在する。浦田川下り斜面には陽起石片岩が露頭する。

柘榴石黒雲母片岩は 2～3 mm 位の貫状を呈し、黒雲母による黑色部と曹長石・石英の多い白帯でなる。鱗片は細黒雲母に変化して細緑色を呈するものがある。柘榴石は黒雲母帯に収し、黒雲母帯にはこの黒雲母を帯状の鱗片を産する。曹長石はレンズ状を呈するものと、石英と共に白色帯を作るものとある。特に曹長石は黑色帯を呈するものと、石英と共に白色帯を作るものとある。特に石英帯は黒雲母帯を呈し、黒雲母黑雲母を呈する。曹長石は細長帯を呈し、黒雲母を呈し、カリ長石は産しない。

陽起石片岩は黒雲母片岩の下位に位し、暗緑色で、肉眼的には片理組織が鮮明でない。水晶岩に産するものと類似する。鱗片は陽起石は淡緑色で、緑色は緑色を呈する。曹長石・緑黒石を含み、部分によって透輝石のレンズ状を呈する。

浦田川支流小舎谷1)には黒雲母片麻岩があり、柄尾の角閃片岩と共に断片的であるが、飛騨変成帯の外縁をなし、恐らく白鳥岳の連帯変成岩、柘榴の松谷結晶片岩1)などと一連のものと見られる。

III 古 生 層

児川の東岸、常念山脈に広く分布し、粘板岩を主として、チャートを挟む。赤岳岩では赤色チャートを産するのでこの名がある。新尾山荘下流にやや厚いチャート層が露出し、戸ケ岳に連する。北東北東西南を示し、北東部は北口の増幅構造で、徳沢小舎附近に増幅がある。花崗岩の接触作用を受けて接触附近ではホルンフェルス化する。児川沿いに徳沢小舎上流で植物化石を産すところがあるが、品種決定は難しく、時代不明であるがチャートを挟む岩相から二疎系と見られる。

IV 中 生 層

中生代の地層および火成岩との分布は次の如くである。
砂岩・頁岩・礁岩……………………………福沢
礁岩・角礁岩………………………………南岳・槍ヶ岳東鏡尾根・赤沢山
独好岩・凝灰岩……………………………福沢
安山岩………………………………………槍ヶ岳・穂高岳・西穂高岳
石英斑岩…………………………………福沢
雲花崗岩…………………………………大天井岳
雲花崗岩…………………………………大天井岳・西穂高・霧沢岳
雲花崗岩…………………………………西岳

礁岩は古生層の粘板岩・チャート・砂岩・花崗岩（船津型花崗岩と見られる）の礁からなり、南岳では最大5cmに達する亜流が見られ、赤沢山側は幅壁の一部である。

角礁岩は安山岩質・石英斑岩質のものがあり、大槍ピーク下は安山岩質で東鏡尾根へ次第に石英斑岩質に移り変わる。西穂高岳東側では安山岩から石英斑岩質角礁岩に移り変わる。駒沢小舎下の絶壁は石英斑岩質の角礁岩が花崗岩によって貫かれる。その角礁岩は人頭大から径30cmにおよぶものがあり、大部分石英斑岩からなるがチャート・粘板岩の礁も含まれる。石英斑岩の進入角礫岩もあるが、掘頭では判別困難である。基盤は石英斑岩質である。この層は赤沢山から対岸南岳へ連なる。大正池畔で花崗岩の接触を受ける附近でも安山岩の南端が角礫岩となっている。

砂岩・礁岩は福沢中央部、東から押出附近にあて、礁岩を挟み、ホルンフェルス化され、花崗岩の接触が近いことがわかる。

凝灰岩・巖塊岩は帝宮ホテル上の霧沢に露出し、安山岩熔岩流を挟む。六百山から霧沢岳の一部にかけて露出し、ホルンフェルス化は余り受けていない。

安山岩は大槍ピーク下では安山岩質角礁岩と結晶片岩の間を略垂直に貫き、南方へ達する。穂高岳下ではその流状構造からN15〜20°E、傾斜70°Eを示し、細粒の輝石安山岩である。穂高岳下では粗粒の輝石安山岩脈がより同方向にこれを貫いている。大正池下には一部的に赤色を呈するところがあるが、花崗岩との接触附近では殆ど変質・再結晶作用を受けず、基礎はガラス質である。今まで剖岩と記載されているが、剖岩に時代的意味を含まず、変質・再結晶作用を受けた岩石と定義する時は安山岩である。花崗岩との接触附近ではホルンフェルス化し、再結晶し、石基も結晶質となり、黒雲母を生じている。特に花崗岩が浅く下を潜っている西穂高岳において著しく、広く陽起石化が行われ、接触部に近くにしたがって更に黒雲母化が行われている。大正池畔の安山岩角礫岩では、陽起石化とともに石基部が灰長石岩により粒状化を受けている。一般に接触部からやや遠い部分では水蒸気の作用が著しく、陽起石化による変成様式の特徴を示す。

石英斑岩・雲花崗岩・雲花冊岩・雲花巖岩・雲花巖岩が順次に進入し、石英斑岩は局部によって角礫化している。雲花冊岩は大天井岳下にあって雲花冊岩中に捕獲岩塊として産出する。雲花冊岩は最も広く分布し、穂高安山岩に接触変成を受けている。黒雲母花崗岩は西岳小舎附近で石英斑岩に進入して石英斑岩を花崗岩化している。細粒石英斑岩岩塊が捕獲岩として対成長が花崗岩の基質を貫くのが望見される。同様の捕獲岩塊は前の穂高尾根下に並び、雲花冊岩の基質急冷線が捕獲岩塊となったものと見られる。

化学分析結果からは槍千・大正池の花崗岩は高嶺型に一致するが、白亜系
中期の花崗岩に当る。
西鍵尾根樋ケ岳下りの石英斑岩中や南鍵尾根下の安山岩中に桃色花崗岩の捕獲岩片が見られるが、これは船津型花崗岩で、このあたりまで船津型花崗岩が延びていたものである。富田達は花崗岩の捕獲岩片のあることから変質を花崗岩後とされているが桃色花崗岩である点と分析値から船津花崗岩と見られる。

Ⅴ 新期安山岩

樋ケ岳西鍵尾根千丈沢下り附近に露出する安山岩は、石英綱岩を基質、黒色ガラス質で流状構造が著しく、柏平への下り斜面を切って南北にのびる。角閃輝石安山岩で、岩質から見ても新期の安山岩に相当し、北方硫黄岳に連続する。黄鉄銅の 5 mm 位の立方形結晶を含むところもある。洪積期の活動で、焼岳系に属するものであろう。

結 語

北アルプスの内陸地樋ケ岳・穂高岳・上高地の地質を経て、柏・穂高の安山岩と花崗岩との関係を明らかにし、この花崗岩が安山岩に接触を与えたことを述べた。安山岩は石英斑岩と共に白亜紀の角礫層中に貫入した岩脈で、全体が花崗岩中に捕獲されて、浮んだような状態を示している。

花崗岩は化学成分上白亜紀の高液性花崗岩類に属し、本邦全域に亘る白亜紀中期の花崗岩類と同一化学成分を示すものである。

結晶片岩類は飛騨変成帯の外縁を示し、未変成古生層との関には石英斑岩があって、関係不明であるが、三疊紀前と見られる。

文 献

1) 富田　達（1928）：上高地盆地及び其周近の地質概要、上高地天然記念物調査報告（内務省）
2) 柴田秀賢・原田久男（1954）：北アルプスの花崗岩類（予報）、地質細、60、709、p. 436～444.
5) 藤本治義・鹿沼茂三郎・緒川洋一（1953）：秋田県新発見のゴトリンド系、東京教育大学地質学講座学習教室研究報告、2, pp. 11～16.