明石層群，播磨層群について（その2）

市原実*・小黒譲司**・衣笠博明***

(1959年11月27日受理)

On the Akasi Group and the Harima Group (Part 2)

Minoru Itihara, Joji Oguro and Hiroaki Kinugasa

(Abstract)

The loose sediments constructing the eastern part of the Harima Hills are divisible into the Akasi Group and the terrace formations.

The Akasi Group which overlies the basement rocks with unconformity, is made up of fluvial gravels, sands, lacustrine clays and thin marine beds. Judging from the stratigraphy and the plant remains (Metasequoia flora), the Akasi Group corresponds to the lower part of the Osaka Group.

The terrace formations are divided into the Older Meimi Gravels, the Younger Meimi Gravels, the Nisiyagi Bed and the Ide Gravels, in ascending order. It is considered that the three wide depositional surface of the Older Meimi Gravels, the Nisiyagi Bed and Alluvium, were formed by the respective rises of sea level during the Quaternary Period.

I. まえがき

市原と小黒は，1956年10月から1958年4月にかけて，明石川以西の東播丘陵地域の調査を行ない，その結果については，すでに発表したが，その後，市原と衣笠は，1958年8月から11月にかけて明石川以東地域の調査を行なって，高崎山層・舞子層などの層準を明らかにするとともに，明
美園層・西八木層に関しては，前に発表した論文と異なる結論に達した。ここでは，明石川以東地域の
調査結果についてのべるとともに，今迄の調査結果とあわせて，東播丘陵地域の地質のまとめをする。

この研究を発表するにあたって，御援助をうけた明石市役所，深田地質研究所に感謝します。姫路
工業大学岸田助教授，大阪市大池辺教授，藤田助教授からは，御援助，御助言をいただいた。また，
関東ローム研究グループの諸学問牛からは，教えられるところ多かった，これらの方々に厚くお礼申し上げます。

II. 明石川以東地域の地質

明石川以東地域には，平野・松本・近江付近及び木幡の古生層，山田北方の花崗岩，木幡・慶明の
石英粗面岩類，福田川流域から太山寺・木見にかけての神戸層群を不整合におよって，明石層群が広
く分布し，さらに，これをおおって，明美畑層，西八木層などが発達している。中津から寺谷の奥に
かけては，西落ちの高崎山断層が南北に走り，明石層群と神戸層群は，この断層で境されていること
が多い（第1図）。本地域の層序は，第1表に示すとおりである。

* 大阪市立大学理学部地学教室
** 深田地質研究所
*** 姫路市立第二中学校
地質学雑誌 第66 卷 第780号 1960年9月
1. 明石層群

大開谷層

模式地は、明石市大開谷の東方の廃。層厚は30m±。大殿谷、山田、大沢付近と伊川浦流域の丘陵のすそにみられ、山田北方では花崗岩に伴随している。一般に、チャートや石英粗面岩類のcobble, pebble まじりの黄褐色砂礫より構成されているが、中部には、ところどころに、連続性のない青緑色湖成粘土層をはさんでいる。この粘土層の代表的なもので、川西付近にみられるラミナの発達した最大厚10m±におよぶ粘土層で、川西粘土層とよぶ。川西粘土層の直下の pebble まじりの粗砂層（1〜2m±）からは、2カ所（川西及び清水）で海棲貝化石を産出する。川西の貝化石層は桟山のりにより、清水の貝化石層は安藤によって、研究されたものであって、両貝層は一括して、舞子貝層とよばれている。桟山、安藤によって報告されている舞子貝層の貝化石は、Tegula rustica (Gmelin), Cinctisca kamakurana (Pils.) var., Papyrisca halimensis (Makimana), Natica adamsiana Dunker, Rapana thomassiana Crosse, Pyrene varians (Dunker), Arca boucardi Jousseaume, Anadara subcrenata (Lischke), Mytilus crassista Lischke, Promantellum hisrei (Pils.), Anomia lischkei Daut. et Fisch., Ostrea gigas Thunberg, Ostrea denselamello saca Lischke, Volachlamys yagurai(Makimana), Chlamys halimensis (Makimana), Corbicula japonica Prime, Venerupis variegata (Hanley) var., Mactra veneratefimis Reever, Macoma incongruia (Martens), Solen gouldi Conrad, Hiastela orientalis (Yokoyama) で、多数種、Arca boucardi Jousseaume, Volachlamys yagurai (Makimana) の2種である。

大開谷層より下位の地層は、ポリング・データによれば、砂礫を主とし、まれに、青緑色湖成粘土層をはさみ、100m 以上の厚さをもつている。

大沢粘土層

模式地は、神戸市垂水区大沢西北の堆。層厚は5m±。大沢粘土層は、青緑色の湖成粘土層であって、塩酸鉱をふくみ、白色と黄褐色の1m±の火山灰層をはさんでいる。この粘土層は、バイト層であるか、大沢付近から、大開谷・小寺・池上・井戸谷まで、追跡され、山田北方の花崗岩山塊周辺では、砂礫に移化する。福中付近には、段丘縁層中に、本粘土層のものと思われる粘土層と火山灰層が密に分布しているところがある。しかし、田中付近の青緑色粘土も、本粘土層の連続と推定される。

長坂新田層

模式地は、長坂新田北側の谷。層厚は、80m±。伊川、種谷川、明石川にそって、広く分布する。伊川以南地域：古生層、石英粗面岩類の cobble, pebble をふくむ黄褐色の砂礫を主とする地層で、山田北では、花崗岩にアパットしている。下より 30〜40m士の層準には、断続する層厚 4m士以下の青暗灰色海成粘土層がある。この粘土層は、サンド・バイブをふくむこと、海成層の特徴である風成面の淡黄の黄色粉によって、潮成粘土層と区別される。亀水隠層中にも、この層準に、海成粘土層が存在している。これ等は全層準を示す海成粘土層を一括し、高塚山粘土層とよぶことにする。

伊川以北地域：伊川以南地域と同様の砂礫を主とし、連続性のないシルト、粘土をはさむ地層であつて、平野・松本・近江付近では、古生層、慶明では、石英粗面岩類に、アパットしている。砂礫は、ところによって、三木礫層にみられるウサリ礫層の層相を呈する。伊川以南地域の構造から考え、その存在は予測される高塚山層の延長、層相として重要であるので、注意しておかざるが、非海成層に移化するためか、宮前付近、三角点 111.5m 直下のサンド・バイブをふくむ塊状のシルト質礫層 (2m±) 以外には、発見できなかった。又、吹上北には、白色火山灰層があったが (標高 115m), その抵りが不明である。伊川以北地域の長坂新田層は、細分できなかった。

亀水隠層

模式地は、神戸市亀水区神戸商大付近の崖。層厚は、100m±。亀水隠層は、cobble〜pebble 大の古生層、石英粗面岩類の礫を主とし、連続性のないシルト・粘土をはさむ地層で、山田の北では花崗岩、近江及び木幡では、古生層にアパットしている。東をかぎる見木〜福田川間に、神戸層群に坐上っている (明石層群堆積後に活動し、明石層群・神戸層群を切ったり傾斜させたりして いる高塚山断層の影響はのぞく)。

本層は、大観谷層・大沢粘土層・長坂新田層の移化層で、縦線相を示すものである。伊川以北地域とくに、寺谷付近における本隠層は、三木隠層に、きわめてよく似た層相を示している。シルト及び粘土は、一般に、湖成のものであるが、高塚山の西南麓子供の家横の崖及び霞ヶ丘の頂上付近には、海成粘土層 (層厚 4m士) が存在する。両粘土層とも、その分布は、局部的であるけれども、同一層準を示すものと考えられ、長坂新田層中の同層準の海成粘土層とともに、子供の家横の崖を模式地として、高塚山粘土層とよぶ。

模式地の本海成粘土層の下部には、貝化石が密集していて、高塚山貝層とよばれている。安藤、福田によって報告された高塚山貝層の貝化石は、次のとおりである。Rapana thomasiana Crosse, Promantellum hirasei (Pils.) , Anomia lischkei Daut. et Fisch., Volachlamys yangurai (Makiyama), Chlamys halimensis (Makiyama), Ostrea gigas Thunberg, Ostrea denselamelllosa Lischke, Corbicula japonica Prime, Fulvia mutica (Reeve), Fitar japonica Kuboda, Dosinia japonica (Reeve), Semele zebuensis (Hanley) ?, Macoma incongrua (Martens), Erodona amurensis (Schrenck), Mactra veneriformis Deshayes. 本層の貝化石には、舞子貝層との共通種が多いが、安藤、福田がのべているように、多産種は、Ostrea gigas 及び北方系の Erodona amurensis の両種でしかもされており、とくに、Erodona amurensis が本層の下部に密集していることは注目に值する。
国鉄垂水駅西方約300mの鉄道路面で、柱状工事の際に発見され、平内、安藤によって、垂水貝層8) となづけられた合集化石礫層からは、Schizothaera keenae KURODA et HABE, Meretrix sp. を産する。この貝層の層準は、たしかなことは、不明であるが、西八木層と著しく異なり、又、高階山貝層よりは低地にあるので、おそらく、舞子貝層の層準を示すものであろう。

なお、前記福部間でみられる白色火山灰層（標高130m）は、長坂新田層の一部のほか、吹上北方の火山灰層と同層準のものである。垂水礫層は、舞子公園付近のポーリングによると、地下60m±まで存在し、60m±140mは神戸層群（80m以深は、海成層でOstreaを含む）、140m以深は花崗岩である。

2. 明美礫層

明美礫層の模式地や層相については、前に発表した3)。本地域の明美礫層は、チャート・石英粗面岩類のcobble, pebbleをふくむ砂礫層を主とし、ところどころに、シルト層を不規則にさす。層厚は、10m以下。明石川以西地域と同様に、赤色土化作用p)をうけ、赤色を呈するが、その程度が弱いところもある。明石層群の砂礫層との区別が、困難な場合もある。本礫層は、塩山・長坂新田・神戸商大及び吹上付近の明石層群、山田の北では、花崗岩をおおって分布し、明美面を形成している。明美面（明美礫層堆積面）には、東部の140mから、西部の50mにわたって、数段の面が、みとめられる。これらのうち、低窪の面には、伊川左岸にみられるように、現河川にそって分布するものがある。少なくとも、明美礫層の一部は、河川が現在の流路にそって流れ去ってから後に、河川沿いに堆積物として、形成されたものと考えられる。

3. 西八木層及び段丘礫層

西八木層は、鹿間によって命名された地層である12)。前に発表した論文8)で、市原と小黒は、西八木層と明美礫層を同時期の地層と考えたが、今回調査によって、西八木層は、明美礫層よりも新しい地層であることが明らかになった。

海岸地域：海岸ぞいの西八木層は、塩屋～垂水間と垂水～舞子間の丘陵絶の段丘の上部（標高60～40m）、清水川西端の段丘（標高40m±）、明石城～大蔵谷間の段丘（標高40～30m±）を形成して分布し、明美面より低い段丘面を形成している。この段丘面は、西八木層の堆積面であるから、西八木面とよぶことにする。

明石川から大蔵谷にかけての段丘には、西八木層が典型的に発達している。その模式的柱状図は、基底の砂礫層（2m±）、中部の海成粘土層（5m±）、上部の砂礫層（7m±）と1つの堆積サイクルを示している。基底の砂礫層は、チャート・石英粗面岩類のcobble, pebbleを主とする、大蔵谷付近では、まれに明石層群の粘土や火山灰層をふくんでいる。中部の海成粘土層は、青暗灰色を呈し、風化面は壊片の黄色を呈す。また、サンド・パイプが多い。上部の砂礫層は、チャート・石英粗面岩類のpebbleまじりの赤色をおびた砂礫を主とするが、急に、クロス・ラミナの発達した礫層に移化することがあり、又、上から1.5m内外の層準に、シルト・パイプをふくむところがある。

明石層群との不整合面は、明石城～大蔵谷間では明石公園テニスコート事務所の西下（標高13～14m）、南南南西の土産場（標高14m±）、大蔵谷教養保養所付近（3カフェ）。西八木層は、海成粘土層を欠いて、砂礫層となっている。標高20～30m）でみられる。西八木層が、明石層群の粘土層上に不整合にのせている場合には（例：教養保養所北側の里）、不整合面の決定は容易であるが、明石層群の砂礫層上に不整合にのせている場合には、その識別はむずかしい。後者の場合には、西八木層の礫層の方が新鮮な層相を示すこと、又、礫層中に、明石層群の火山灰層が混入することなどを、区別の基準にした。段丘基部の露出が、よくないために、不整合面の形態を、くわしく、とらえることは、
できなかったが、中部の海成粘土層が、明石域の西端から、明南高校の西まで、完全に連続することからみて、明南高校以西の地域に、西八木層堆積前の侵蝕期の大きな谷の存在を、認めねばならない。

明南高校以東・清水・川西・舞子・垂水・塩屋にかけては、西八木層と明石層群の不整合面は、高度を高め、海成層も消滅して、砂礫層のみとなり、地層の層厚も、一般に厚くなる。

明石域～大蔵谷間の西八木層の周辺には、西八木層より新しい段丘礫層の形成する低位の面が存在する。この礫層は、明石公園テニス・コート事務所東側に存在する西八木層の中部海岸成粘土層を、大きさくすりここんでおり、明南高校の西の土採場では、西八木層の上部砂礫層を、不整合におおついている。

大蔵谷以東においても、このような段丘が存在する。いずれも、不整合面を確認することは、できなかったが、一応、西八木層より新しい段丘礫層として認知した。塩屋～東垂水間と垂水～舞子間の丘陵部の段丘の下部（標高 40m 以下）、福田川にそって発達する段丘は、西八木層より新しい段丘礫層の形成するものであろう。同様の段丘は、山田川、朝露川口地域にも、小規模ながら存在する。

明石川水域：明石川流域の西八木層は、伊川谷谷川・明石川にそって分断し、上池の対岸、伊川谷浄水場から生田に至る道路跡及びその南方の新道切開、上池、高津橋の東方には、サンド・パイプをふくむ青暗灰色の中部海成粘土層がみられる。

伊川浄水場から生田に至る道路跡では、海成粘土層下のチャート、石英粗面岩類の cobble, pebble を主とする基底礫層（4〜5m ±）が、明石層群の礫礫層を不整合におおつており、基底礫層中には、明石層群の火山灰埃が認められる（不整合面の標高 20m ±）。

伊川浄水場北方の新道切開では、海成粘土層（4m ±）は、軽微な起伏面を境として、礫層におおわれている。この起伏面は、不整合面とは考えられず、海成粘土層をおおう礫層の堆積面は西八木層であろう。伊川浄水場より生田に至る道路跡、上池の対岸及び上池では、海成粘土層はその上にのっている礫層によって、ほとんどけずり去られている。これらの礫層は、西八木層より新しい段丘礫層である。高津橋の東方では、露頭が悪いために、海成粘土層とこれをおおう礫層の関係は、よくわからない。

明石川・穂谷川・伊川流域には、明美面より低位の段丘は、地形的にみて、多くとも 2〜3 段ある。これらのうち、最高位の水谷・慶明・今寺～生田の各段丘面（標高 40〜50m）が、西八木層 |

堆積面を推定される。河川の上流地域では、西八木層の保存は悪く、それらしいものが、わずかに認められる程度で、段丘面のはっきりしているものは、ほとんど、西八木層堆積後の形成にかかるものである。西八木層より新しい段丘礫層は、伊川浄水場付近から赤羽・井出・上池にかけて、もともとよく観察されるので、井出礫層とよぶことになる。

4. 沖積層

沖積層は、各河川の流域ならびに、海岸の平地を形成している。明石川下流域のポーリング・データによつて、沖積層をしらべてみた。その層序は、第 2 図に示すとおりであつて、基

第 2 図 明石川下流域の沖積層柱状図
低礫層，中部の軟弱な海成粘土層、上部の砂礫層と、1つの堆積サイクルを示している。冲積層の基底深度は、上池で13m +、東王寺水源では19mである。

5. 塗造について

古生層、石英粗面岩類、花崗岩及びこれらを不整合におおう神戸層群が、本地域の明石層群の基盤である。

平野・松本・近江付近及び木崎の古生層、慶明の石英粗面岩類、山田北方の花崗岩などは、地表上に小山塊として突出、或いは、明石層群におおわれて、思い入れない場所に、その頭をかかせている。このような小山塊は、神戸層群堆積層から存在したもので、明石層群・神戸層群は、これ加スノアパットしている（舞子のポーリング、地域外の雄岡山西方のポーリングによって、明らかにできる）。一方、東部の木見から、福山川流域にかけては、神戸層群が基盤を構成しており、明石層群は、高塚山断層の影響をのぞいてみると、神戸層群上にゆるやかな傾斜で、傾斜している。

明石層群は、上にのべたような関係で、基盤を不整合におおぎ、一般に、西南方にゆるやかに傾斜している。東部地域で、明石層群を切ったり、急傾斜させてい、西落ちの高塚山断層は、寺谷の奥から、中山にかけて南北に走っている。高塚山断層の形成期は、明美礫層以後の層が、明石層群を切る断層、複断の影響をうけていることから、明石層群堆積後に、明美礫層堆積前に推定される。明美礫層・西八木層・井出礫層は、基盤や明石層群をおおい、その堆積平塚面は、いずれも西方向に傾斜している。

III. 東播丘陵地域の地質のまとめ

ここでは、前に発表した明石川以西地域の地質をあわせて、東播丘陵地域の地質（第3図）について、のべることにする。東播丘陵地域の層序は、第1表に示した。

1. 基盤

東方の六甲山塊を構成している古生層、石英粗面岩類、花崗岩などを不整合におおう神戸層群の丘陵、西部の加古川付近の石英粗面岩類及ぶそのを貫く石英砂礫岩の山塊、丘陵地に突出している古生層、石英粗面岩類、花崗岩の小山塊が、東播地域の明石層群の基盤を構成している。

丘陵上に突出している小山塊の分布は、山田の北の花崗岩をのぞくと、城山〜押部谷をむすぶ線上（城山・雄岡山・雄岡山・近江付近）及び長坂寺〜太山寺をむすぶ線上（長坂寺・金崎・平野〜松本・太山寺）にある。

神戸層群は、本地域の北部・東部に広く分布しているが、ポーリングによると、舞子・雄岡山の北・赤阪・別府などにも、その存在が知られ、その分布は、ほとんど東播丘陵全域におよんでいる。明石層群は、神戸層群上の平坦な侵食面をおおって、神戸層群とともに、西部の山塊及び丘陵地域に突出している小山塊にアパットしていると考えられている。

明石層群堆積前の侵食期には、西部・北部の主として石英粗面岩類よりなる山塊、東方の古生層、石英粗面岩類、花崗岩などよりなる六甲山塊（当時は、まだ、現在のように顕著な存在でなかった）にかぎられた盆地内には神戸層群の侵食平塚化をうけたながらな丘陵がひろがり、その丘陵上には、古生層、石英粗面岩類、花崗岩よりなる小山塊が、城山〜押部谷、長坂寺〜太山寺をむすぶ2線上に、点在していた。

2. 明石層群

明石川以東地域の明石層群の調査によつて、重要な鍵層となったものは、高塚山粘土層と大沢粘土層

* 長坂寺より西では、播磨灘の上島〜鞍掛島〜太島〜家島につながる。
土層である。高塚山粘土層が、明石海岸の東二見層最上部の海成粘土層及び明美丘陵南部の赤阪粘土層と同層準であることは、まず間違いいない。大沢粘土層は、青緑色の湖成粘土層で、白色〜灰色色火山灰層をはさんでいる。明石海岸には、火山灰層をはさんで屏風浦・林崎の両湖成粘土層がみられるが、明石川以東では、火山灰層をふくむ粘土層は、大沢粘土層しか発見できなかった。私たちは、高塚山粘土層との関係から、大沢粘土層を、屏風浦粘土層及び明美丘陵南部の赤阪粘土層に対比した。

川西粘土層は、連続性がなく、砂礫層に移化して、その層準の決定は困難であるが、大沢粘土層よりは下位で、ほぼ、林崎粘土層の層準に相当すると思われる。したがって、婆子貝層は林崎粘土層より下位の層準であると考える。長坂新田層・大沢粘土層・大蔵谷層の縦辺相である亜水礫層は、押谷付近で、三木層準と連続している。明石川以東地域の明石層準の層序と以西地域の層序の対比は、上にあげた諸点をもとにして行なった。

明石層群の堆積は、東方の六甲山塊の隆起にともなう、盆地部の沈降によってはまど、北部及び東部には後背地から供給された三木礫層・亜水礫層が、西部及び南部には砂礫・粘土からなる地層が堆積する。この造盆地運動は、現在まで影がされて、播磨灘や大阪湾をつくりあげたものであって、六甲変動とよばれている。明石層群が、西南に傾斜し、東方で神戸層群上に坐上し、西方で、石英
顕面岩類の山塊にアパットしているのも、又、高塚山断層の形成や各段丘面が西に傾斜しているのも、皆この運動によっている。

盆地には、最初、河成・湖成の砂礫及び粘土層が堆積していたが、やがて、海が浸入し、舞子貝層が堆積する。舞子貝層は、Volachlamys yagurai (Makiyama), Chlamys halimensis (Makiyama)などを含有している。海の浸入をうけたのは東側丘陵の東南部のみで、他は陸成の砂礫、粘土層の堆積がつづいた。海がしきぞくと盆地には再び、河成・湖成の砂礫、粘土層の堆積がくりかえされる。この時期の湖成粘土層には、林崎粘土層・屏風浦粘土層などがあつて、Parastegodon akashiensis Takai, Stegodon sugiyamai Tokunaga, Elaphurus davidiana Milne-Edwards, Metasequoia distichia Miki, Juglans cinerea L., Glyptostrobos pensilis Koch などを産出す。

2回目の海浸は、1回目の海浸より北方におよんだようで、赤沢粘土層・高塚山粘土層・東二見層、最上層の海成粘土層を残している。高塚山粘土層の下部（高塚山貝層）には、Volachlamys yagurai (Makiyama), Chlamys halimensis (Makiyama)など舞子貝層との共通種もみられるが、多産種は Ostrea gigas Thiunberg 及び北方系の Erodonana amurensis (Schrenck) の2種である。舞子貝層・高塚山貝層によって示される2回の海浸が、盆地の沈降によるのか、海水面上昇によるのか明らかでない。しかし北方系の Erodonana amurensis が、高塚山貝層の下部にのみ密集していることは、海水面上昇説をより有力にしているように考えられる。

高塚山粘土層堆積後、盆地には、また、河成・湖成の砂礫、粘土層が堆積する。この層準以後の地層は、ほとんど、けずり去られている、明らかにできない。

3. 高塚山断層

明石層群の堆積後、東方の六甲山塊は、急に上昇し、この影響をうけて南北に走る西落ちの高塚山断層が、形成された。この時期が、六甲変動の最盛期である。

4. 瀬戸内面

盆地は、六甲変動最盛期の地殻運動によって、完全に陸化し、その後、大規模な侵蝕平坦化が行われた。この時期の侵蝕平坦面は、下村・今村が、瀬戸内海に海水の侵入なく、乾燥気候の下に形成されたとし、又、貝塚が、礫石群、第三紀層、花崗岩の地域に特に発達がよいとし、瀬戸内面（低位侵蝕平坦面）とづけたものであつて、瀬戸内に広く分布する。本地域の瀬戸内面は、東方及び東北の明石層群・神戸層群の丘陵の頂をつくる面で示される。

5. 明美層層

明美層層は、一般に、赤色土化をうけ、瀬戸内面より低位置に、広く分布し、東部、東北部の 170～150m から西部の 30m にわたる広大な明美面（明美層成堆積）を形成している。明美面には、数段の面がみとめられる。高位の面を形成する礫層は、小野の東方（万縄寺新田）・青野ヶ原・雄岡山付近・長坂新田付近にみられるように、現河川の流路と無関係に分布している。このような礫層を旧期明美層、礫層堆積面を高位明美面とよぶことにする。一方、低位の面を形成する礫層は、小野付近の加古川左岸、美の川右岸、明石川右岸、伊川左岸にみられるように、現河川にそう河岸段丘堆積層として分布する。このような礫層を前期明美層、礫層堆積面を低位明美面とよぶことにした。

ここで、問題となるのは、雄岡山以西、加古川にかけての広大な明美面である。この面は、雄岡山付近の高位明美面からつづきの面のようにみえる。しかし、小野付近の高位明美面、低位明美面を南に追うと、問題の地域にも、高位、低位の両面が存在しなければならないことがわかる。加古川の流路が、東方にふれていたと推定されるのであるが、この点については、更に今後の検討を要する。
第4図 明石海岸海蝕崖の図（この図は、図面の図14をもとにして、われわれの観察によって、訂正をほどこしたものである。）
旧期明美礫層には、化石が発見されないため、その成因は明らかでないが、海水面上昇にともなう扇状地及び河川氾濫原堆積層の可能性が大きい。高位明美層は、六甲山塊の隆起と、おそらく、それにともなった海水面上昇によって、侵食されはじめると、この時期に、明美丘陵地域の現在の各河川の流路が決定されたのであって、河川ぞいの新期明美礫層の分布は、この状態を示していると推定される。

6. 西八木層及び段丘礫層
明石川以東地域には、西八木層が、美明美層よりも低位の段丘面を形成して、分布していることが、今回の調査で明らかになった。したがって、明石海岸の西八木層は、再検討されねばならない。

明石海岸の再調査の結果でも、西八木層堆積層は、海蝕崖上の平坦面を形成し、この面は明美層よりも明らかに低位である。図4に、海蝕崖のスケッチを示す。海蝊崖上の平坦面を西八木層堆積面とし、藤江の東約300mから、林崎にかけてみられる礫層を上位の西八木層と下位の藤江層にわけた点が、前調査の図を異にする。藤江層と西八木層の不整合面は、藤江の東約400mの地点で、確認できる。ここでは、粘土層をふくむ新鮮なかんじの礫層が、黄褐色のややくすんだかんじの砂礫層の伏起面をおおっているのが、みられる。この不整合面は、識別の困難な場所が多いが、大体、図に示すように追跡される。なお、林崎東北の和納の国道渋きの瀬でも、西八木層の中部海成粘土層と上部砂礫層を観察できる。

前論文では、明石海蝊崖上の平坦面を、大久保面となしてください。しかし、この面は、西八木層の堆積面であることがある、明らかに寄せたもので、大久保面を廃棄し、明石川以東地域と同様に西八木層とよぶことにする。西八木層相当層には、神河地域の神神層、小野付近の小野神層がある。

西八木層基底の谷地形は、高さ明美層形成後、海水面が低下し、侵食が最大に達した時期を示している。以後、海水面は、上昇に転じ、海は河川ぞいに浸入し、海岸に面した丘陵は海蝊をうけた。西八木層、当時の海岸平野及び河川氾濫原の堆積層であって、基底礫層、中部海成粘土層、上部砂礫層（最も上部赤色土化）1つの堆積サイクルを示している。

西八木層及び神神層からは、Elephas namadicus naumannii Makiyama、Anadara granosa(L.)などを産する。又、西八木層からは、所謂明石原人の脇骨を産出したといわれているが、その正確な層準は、不明である。

西八木層は、六甲山塊の隆起と海水面低下によって、侵食される。この侵食によって、西八木層より低位の段丘礫層が形成され、最後に、沖積層基底の谷地形が完成する。沖積層は、最後の海浸によって、この谷地形をうつって形成された地域である。

東播丘陵地域には、大別して、高位明美層・西八木層・沖積層の3つが顕著な堆積平面图があるわけであり、西八木層・沖積層は確実に、高位明美層は恐らく海水面上昇に対応して、形成されたものである。又、明美礫層及び西八木層の赤色土化は、高位面を形成するものほど、その作用が深部にまで及び、中部地方から中国地方にかけての段丘を調査する場合、上記の顕著な3つの堆積平面図とともに、重要な層準の役をはたすと思われる。

IV. 明石層群と大阪層群の関係、ならびに、接縁層群に関して
明石層群は、明石海峽、淡路島を通じて、大阪層群につながっているので、明石層群の層序を大阪層群の層序と対照する場合に、前のべたように1)、化石のほかに、海成層が重要な層面になると考える。今、Metasequoia植物群の産出層準と海成層を基準にして、両層群をくらべてみることとする。大阪層群には、少なくとも8枚の海成粘土層があって7)、Metasequoia植物群は、今のところ、基底～下より2枚目の海成粘土層下層の層準（千里山脇層）に、その産出が知られている。一方、明石層群
でも、舞子貝層の層準（下より 1 枚の産層）と高塚山粘土層（下より 2 枚目の産層）の間に、
同種物層を産出しているのであって、高塚山粘土層直下より下位の地層は、大阪層群千里山産層に対
比されると考える。

明石層群は、大阪層群と連続する上に、大阪層群上部にあたる地層をほとんど欠いているので、私
たちも、池辺と同様に、今後は、明石層群を廃棄して、明石産層とよび、大阪層群にふくめる。

播磨層群は、鹿間によると、西八木層・藤嶺層・東二見層・大久保産層などを、ふくむ地層であ
るが、これらの地層は、いろいろ時代の異る地層である。したがつて、混乱をまねく恐れのある播磨
層群という地層名は、廃棄する。

参考文献

1) 安部保二 (1953): 舞子、高塚山産化石、兵庫産生、2. (3): 141—144.
2) 福田 理・安藤保二 (1951): 高塚山産産、地質誌、57: 415.
4) 池辺座生 (1952): 地質学的立場からみた日本のいわゆる第 4 紀の編年について、INQUA 日本支部連
続誌、(1): 3—11.
5) IkEbe, N.(1956): Cenozoic geohistory of Japan. Proc. 18th Pacific Science Congress, Manilla,
2: 446—456.
13) 三木 茂 (1949): 鮮新世以来の近畿産に産する個体数の変化について、地質と地質、9: 105—144.
15) 下村英一・今村学郎 (1938): 芋子産層の侵蝕形、地誌、14: 565—590.