HYDROGEN AND STRONTIUM ISOTOPE RATIOS OF DEEP-SEA ROCKS FROM THE WESTERN PACIFIC

Yoshimasu Kuroda¹, Kenji Shuto², Koichi Tazaki³, Masayuki Komatsu⁴, Masanori Ishikawa⁵, Tetsuro Suzuoki⁶ and Sadao Matsuo⁷

Abstract Water contents, and D/H and ⁸⁷Sr/⁸⁶Sr ratios were measured on the deep-sea rocks obtained from the western Pacific during the 17th cruise of R/V "Dmitry Mendeleev", the investigation by International Working Group of the IGCP "Ophiolites" in 1976. Values of D/H and water contents are fairly scattered, but ⁸⁷Sr/⁸⁶Sr ratios are distributed in a narrow range. No relationship among these values has been found.

Introduction

Geochemical and Petrographical information on igneous rocks from ocean floors has been accumulated recently, but most of the information is for oceanic ridges and basins. There is little information for rocks from trenches, though their significance on various problems in earth sciences has been recognized. Fortunately many specimens of igneous rocks from trenches were obtained by dredging during the 17th cruise of R/V "Dmitry Mendeleev", the investigation by International Working Group of the IGCP "Ophiolites" in 1976. We measured water contents, and D/H and ⁸⁷Sr/⁸⁶Sr ratios of some of these specimens; three basalts from the Parece Vela basin, four basalts from the Mariana trench, three andesites from the Palau trench.

Fig. 1. Locality of sampling sites.
Nos. 1 to 9 are the same as those in Table 1.

and five basalts, two gabbros and a serpentinite from the Yap trench. The sampling sites of these specimens are shown in Fig. 1.
Table 1. D/H and 87Sr/86Sr ratios of the deep-sea rocks with the pertinent chemical data.

<table>
<thead>
<tr>
<th>E2O (wt%)</th>
<th>δD (‰)</th>
<th>87Sr/86Sr</th>
<th>MgO/(FeO+Fe2O3)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1-1</td>
<td>0.80</td>
<td>-94.8</td>
<td>-</td>
</tr>
<tr>
<td>1-2</td>
<td>1.14</td>
<td>-89.6</td>
<td>0.7035±3</td>
</tr>
<tr>
<td>1-3</td>
<td>0.51</td>
<td>-90.3</td>
<td>0.7034±2</td>
</tr>
<tr>
<td>2</td>
<td>2.01</td>
<td>-97.7</td>
<td>0.7037±2</td>
</tr>
<tr>
<td>3-1</td>
<td>1.09</td>
<td>-55.8</td>
<td>0.7035±3</td>
</tr>
<tr>
<td>3-2</td>
<td>1.07</td>
<td>-80.9</td>
<td>0.7040±2</td>
</tr>
<tr>
<td>3-3</td>
<td>1.04</td>
<td>-78.1</td>
<td>0.7037±3</td>
</tr>
<tr>
<td>4-1</td>
<td>3.67</td>
<td>-39.2</td>
<td>0.7032±2</td>
</tr>
<tr>
<td>4-2</td>
<td>4.72</td>
<td>-40.3</td>
<td>0.7036±3</td>
</tr>
<tr>
<td>4-3</td>
<td>5.00</td>
<td>-43.4</td>
<td>0.7032±2</td>
</tr>
<tr>
<td>5-1</td>
<td>1.09</td>
<td>-44.8</td>
<td>0.7034±2</td>
</tr>
<tr>
<td>5-2</td>
<td>0.88</td>
<td>-45.3</td>
<td>0.7034±2</td>
</tr>
<tr>
<td>6</td>
<td>0.78</td>
<td>-78.7</td>
<td>0.7034±2</td>
</tr>
<tr>
<td>7-1</td>
<td>1.90</td>
<td>-44.1</td>
<td>0.7037±2</td>
</tr>
<tr>
<td>7-2</td>
<td>0.28</td>
<td>-74.8</td>
<td>-</td>
</tr>
<tr>
<td>7-3</td>
<td>0.54</td>
<td>-72.5</td>
<td>0.7033±2</td>
</tr>
<tr>
<td>8-1</td>
<td>11.30</td>
<td>-59.5</td>
<td>-</td>
</tr>
<tr>
<td>8-2</td>
<td>12.64</td>
<td>-56.6</td>
<td>-</td>
</tr>
<tr>
<td>9</td>
<td>0.83</td>
<td>-75.8</td>
<td>0.7037±2</td>
</tr>
</tbody>
</table>

Note for Table 1.
Sampling sites are shown in Fig. 1 as the same numbers in this table.

1 : St. 1,398, Parece-Vela Basin, E139°10.2'-
N17°00.8' to E140°11.1'-N17°07.1', 5,600-5,300 m,
aphric basalts (1-1 ; D2-11, 1-2 ; D2-14, 1-3 ;
D2-17), 2 : St. 1,402-D2, Mariana trench off-
shore slope, E146°56.3'-N13°36.5' to E146°59.4'-
N13°33.0', 5,600-5,400 m, aphyric basalt (D2-11a),
3 : St. 1,401, Mariana trench near shore slope,
E144°21.2'-N12°16.4' to E144°20.3'-N12°16.2',
5,500-5,400 m, basalts (3-1 ; D1-5-8, 3-2 ; D1-9,
3-3 ; D1-11a), 4 : St. 1,423, Palau trench near
shore slope, E134°51.1'-N7°46.4' to E134°50.7'-
N7°46.3', 6,700-6,250 m, andesites (4-1 ; D1-9b,
4-2 ; D1-12, 4-3 ; D1-14), 5 : St. 1,427, Yap trench
near shore slope, E137°52.9'-N8°25.4' to E137°52.3'-
N8°52.9', 8,200-7,650 m, gabbros (5-1 ; D1-7,
5-2 ; D1-12), 6 : St. 1,430, Yap trench near shore
slope, E138°33.6'-N9°36.0' to E138°35.0'-N9°36.5',
7,600-7,250 m, basalt, 7 : St. 1,440, Yap trench
off shore slope, E138°35.0'-N9°34.9' to E138°35.6'-
N9°34.8', 6,100-5,600 m, basalts, (7-1 ; D1-TK01,
7-2 ; D1-TK08, 7-3 ; D1-8), 8 : St. 1,431, Yap
trench near shore slope, E138°30.6'-N9°39.2' to
E138°29.4'-N9°39.1', 7,500-7,100 m, serpentinite (D1-
2-3, 8-1 ; inner part, 8-2 ; peripheral part), 9 :
St. 1,437, off shore slope of Yap-Mariana junction,
E139°02.5'-N11°04.8' to E139°01.5'-N11°02.7',
7,400-7,000 m, basalt (D1-4), 11 : Sarigan Island,
andesites (11-1 ; Kg 01, 11-2 ; Kg 03), 12 : Pagan
Isle, basalt (Ag 01), 13 : Anatahan Isle, andesite
(An 04).

87Sr/86Sr ratio of Aimer & Amend SrCO3 standard reagent was 0.7081±0.0002 in average, and 87Sr/
86Sr values in the table were subtracted ones from values measured.

In addition, 87Sr/86Sr ratios of three andesites from the Isle of Sarigan and the Isle of
Anatahan, and of a basalt from the Isle of
Pagan were also measured.

We started this study with the expectation that there should be some relationship between
87Sr/86Sr, D/H and water content of rocks.
Based on the relationship, we may add certain information on the origin of trench igneous rocks.
Against our expectation, the results are not so promising as seen later. However,
we venture to present this paper, because we believe it supplies some parameters which may
be useful to elucidate the origin of trench igneous rocks after combining with other
information.

Results and discussion

The technique and accuracy of extraction of water from bulk rocks and measurement of its content and D/H ratio were already described elsewhere (KURODA et al., 1974).

Those for 87Sr/86Sr ratio were also presented previously (SHUTO, 1974).

Results of analyses are presented in Table 1. Although the precise ages of these igneous rocks are not distinct, they would be younger than the Miocene~Eocene, judging from the ages of sediments associated with them, which contained some fossils (INTERN. WORK. GROUP. IGP, 1977). Therefore, 87Sr/86Sr ratios measured here are probably very close to the initial ratios, though we did not measure the contents of Rb and Sr. Since the volcanic rocks from the Isles of Sarigan, Anatahan and Pagan on the Mariana ridge are of the
Quaternary (ISHIKAWA & EGAWA, 1977), the
$^{87}\text{Sr}/^{86}\text{Sr}$ ratios measured are certainly the representative of the initial ratios.

The range of $^{87}\text{Sr}/^{86}\text{Sr}$ ratios of these rocks is very narrow, viz., 0.7032 to 0.7040, but that of δD values is rather wide, viz., -40 to -95%. Water contents of basalts are also variable from 0.28 to 5.00\%. Water content of a serpentinized is reasonable. There is no regular correlation between water content and D/H ratio (Fig. 2), and also no relation between water content and $^{87}\text{Sr}/^{86}\text{Sr}$ (Fig. 3). Among the specimens even with water content less than 2\%, δD values are widely scattered.

Provided that the increase in water content of the rocks is due to alteration by sea water, it is expected that both $^{87}\text{Sr}/^{86}\text{Sr}$ and D/H ratios should become higher with the increase of water content, because $^{87}\text{Sr}/^{86}\text{Sr}$ and D/H ratios of sea water are higher than those of fresh basalts. SATAKE and MATSUDA (in preparation) found a linear relationship between water content and $^{87}\text{Sr}/^{86}\text{Sr}$ ratios for basalts from the Mid-Atlantic ridge, indicating that $^{87}\text{Sr}/^{86}\text{Sr}$ ratios were increased along with the formation of chlorite. Their conclusion was supported by the D/H measurement of the bulk water. In our case, $^{87}\text{Sr}/^{86}\text{Sr}$ ratios are distributed in a narrow range as compared with that found by SATAKE and MATSUDA, though water content and D/H ratio vary widely. It can not be considered that the rocks have been subjected to the influence of sea water. The rocks with δD higher than -60% can be the product after the interaction of fresh rocks with sea water, because δD of the juvenile water in the mantle would be lower than -90% according to KURODA et al. (1977). However, since the water content of original fresh basalts is not known, the amount of water picked up during rock–sea water interaction is impossible to

Fig. 2. Relationship between water content and δD value.

Numbers are the same as those in Table 1.

Fig. 3. Relationship between water content and $^{87}\text{Sr}/^{86}\text{Sr}$ of basalts and gabbros.

Fig. 4. Relationship between δD and MgO/(FeO+Fe$_2$O$_3$).

Numbers are the same as those in Table 1.
be estimated.

The relationship between δD and MgO/FeO + Fe₂O₃ of these rocks is shown in Fig. 4. There is a correlation between them. It has been known that δD values of mica, amphibole, chlorite etc. depend on their chemical composition, especially X₉Fe (ferrous iron ratio in octahedral position), as demonstrated by SUZUKI & EPSTEIN (1976) and KURODA et al. (1976).

Water content and D/H ratio of the serpentine (No. 8 in Table 1) are reasonable values. It is also reasonable that the inner part (8–1) shows slightly lower water content and lower δD value than the peripheral part. The peripheral part may have somewhat interacted with sea water.

The ⁸⁷Sr/⁸⁶Sr ratios of rocks from the East Pacific rise, the western Pacific basin and the island arcs in the western Pacific are distinguishable as seen in Fig. 5. The ratios of rocks from the Mariana, Yap and Palau trenches (No. 10 in Fig. 5) are distinctly higher than those of the tholeiitic basalts from the East Pacific rise (No. 1). On the other hand, the ratios of basalts from the Palau Isles and the Mariana basin (Nos. 6, 7) are similar to those from the East Pacific rise. Many volcanic rocks of the island arcs such as the Izu–Bonin arc and the Mariana arc, except for the Palau Isles, and of the deep-sea basins in the eastern Pacific are similar to the rocks from the trenches in their ⁸⁷Sr/⁸⁶Sr initial ratios.

References

INTERNATIONAL WORKING GROUP ON THE IGCP

西太平洋の海溝から得られた火山岩の水素およびストロンチウムの同位体比

黒田 吉益・周藤 賢治・田崎 耕市・小松 正幸・
石川 政憲・鈴騏 哲朗・松尾 禎士

（要 旨）

1976年 IGCP オフィオライト・ワーキンググループが行なった西太平洋の海溝の調査（ドミトリー・メンデレフ号による）の際得られた岩石について、D/H・含水比・Sr/Sr を測定した。試料採取地点は第1図に示すとおりであり、結果は第1表に示してある。D/H・含水比はかなりの幅で変化を示すが、*Sr/Sr はほとんど変化しない。それらの間には相関関係がまったく見られない。成因論に基づく論は見られなかった。