沖縄南部の鮮新－更新統境界付近の石灰質ナンノプランクトン層序

西 田 史 朗*

Calcareaous nannoplankton biostratigraphy around the Pliocene-Pleistocene boundary in the southern part of Okinawa-jima, Japan

Shiro Nishida*

Abstract Calcareaous nannoplankton biostratigraphy around the Pliocene-Pleistocene boundary in a sub-tropical land-based section was revealed with a scanning electronmicroscope technique. Studied sequences develop in the southern part of Okinawa-jima, stratigraphically ranging from the Pliocene Shinzato Formation up to the Pleistocene Chinen Sand. Their boundary is set between underlying cross-laminated gray fine sandstone and overlying light brown sandstone and situated 2.5 m above the Kudaken Tuff.

In the section studied, seven calcareaous nannoplankton events were recognized, that is, the disappearance of Discosaster pentaradiatus, the appearance of Acanthoxa quatro spina, the occurrence of Gephyrocapsa caribbeanica, the appearance of Gephyrocapsa protohuleyi, the disappearance of Cyclcoccolithus macintyreii, the extinction of Discosaster brouweri and the first appearance of Gephyrocapsa oceanica in ascending order.

Above all, the extinction of Discosaster brouweri and the first appearance of Gephyrocapsa oceanica are noticeable in relation to the first appearance of planktonic foraminifer Globorotalia truncatulinoides and the paleomagnetic Olduvai Event.

In the paper these micropaleontological events around the Pliocene-Pleistocene boundary are discussed and time-transgressive appearance of Gephyrocapsa oceanica is suggested.

はじめに

南西諸島上部新生界の石灰質ナンノプランクトン層序について、西田（1973 & 1977 a）は予察的に報告している。その中で鮮新－更新統境界を新里層上部におき、知念層との間で多少の時間間隔があるものとの従来の考え（MacNeil, 1960）をうけ、知念層を下部更新統とした。

今回、沖縄本島南部の新里層から知念層に及ぶほぼ連続した層序断面から得た試料について、この鮮新－更新統境界付近の石灰質ナンノプランクトン層序を再検討した。その結果、鮮新世後期から更新世初期にわたるナンノプランクトン層序が得られ、この境界付近での本化石群の消長を明らかにすることが出来、従来その層位とともに時代論についても問題をはらんでいた知念層について、見解を新たにすることが出来た。

さらに、更新世の始まりを示すとされてきたGephyrocapsa oceanicaの出現時期について、再検討の必要性を出発点に至った。
小論の発表にあたり、多くの誤訛を指摘され、有意義な提示を与えられた査読者諸氏に心から感謝の意を表したい。本研究に使用した費用の一部は、文部省科学研究費補助金による。

新里層－知念層に関する研究の概略

南西諸島の上部新生層はHanzawa（1935）の研究に始まる。彼はこれらの島々に分布する海成上部新生層にShimajiri Bedsと名付け、そこから我が国で初めてCoccolithophoridaeの産出を報告している。その後Shimajiri Bedsの年代について、下部は中新統、上部は中新統ないし鮮新統と考え、上位の琉球石灰岩を鮮新統とした。

この後、長期にわたる層位学的的研究の中断の後、MacNeil（1960）はTable 1の層序をたてた。さらに福田ほか（1970）と名取ほか（1971）はTable 2
Table 1 Stratigraphy of the Upper Cenozoic in Okinawa-jima (MacNeil, 1960).

- Pleistocene
 - Ryukyu Group
 - Pliocene
 - Miocene
 - Shimajiri Formation

- Naminado Limestone
- Yontan Limestone
- Naha Limestone
- Nakoshi S.S. + Chinen S.S.
- Shimazato Tuff Member
- Yonabaruro Member

Table 2 Stratigraphy of the Upper Cenozoic in the southern part of Okinawa-jima (Fukuta et al., 1970 and Natori et al., 1971).

- Ryukyu Group
 - Ryukyu Limestone
 - Chinen Sandstone
 - Shimazato Formation
 - Yonabaruro Formation
 - Tonigusuku Formation
 - Basement

- Shimajiri Group

の如く改訂した。

生層序に関して名取ほか（1971）は、島尻層群（下位から順に浮遊性有孔虫の Pulleniata primitia, Globorotalia humerosa, Globorotalia tumida (s.s.), Sphaeroidinella dehiscens, Globorotalia tosaensis などが出現し、層群中で消滅するものとして Globigerina nepenthis, Sphaeroidinellopsis seminulina, Globoquadrina altispira (s.l.) などが認められ、これら以外に、Globorotalia merotumida, Globorotalia crassformis (s.l.), Globorotalia eritina (s.l.), Globorotalia hirutaka (s.l.) などが検出されることから、Brow (1969) の N. 16 から N. 21 にほぼ対比されるとしている。名取層は、Globorotalia truncatulinoides で代表される群を含み、N. 22 に相当するとしている。

福田ほか (1970) は、沖縄本島南部の新里層から Globorotalia truncatulinoides, Globorotalia tosaensis, Globorotalia crassformis, Globigerina inflata の産出を報じ、本層を宮崎平野の高鍋層中・上部に対比した。

Noda (1965, 1971 & 1972) は知念層と同層序とされてきた仲尾次層を軟体動物化石から鮮新統とし、高鍋一穴内一掛川層群に対比している。

西田 (1973) は、新里層の中で石灰質ナノプランクトンの Discosteller challengeri, Discosteller pentaradiatus, Discosteller sverculus, Discosteller variabilitis が消滅し、Gephyrocapsa caribbeana が出現し、新里層の上部で Cyclosestolithus macintyreii と Discosteller brouweri が消滅するとした。さらに知念層の構成地からは discoasters の各種も、Gephyrocapsa oceanica と産出しないとし、したがって、新里層は鮮新統上部、知念層は更新統下部であると考え、ナノプランクトン群集にかなりの差異があるとした。その後、西田 (1977a) は南西諸島の上部新生界石灰質超酸化物層序を再び検討し、沖縄本島南部の礁縁地の仲尾次層と新里層の高鍋・穴内・掛川層群に対比した。
さらに Inaraki & Tsuchiy (1975) は久手堅と知念の層序断面から、浮遊性有孔虫の Globigerinoides conglobatus, Globorotalia quadriobolobatus, Stepeliana oreuropaea, Globigerinoides rubescens, Orbulina universa, Globorotalia eugubina, Seminavis planulata, Pseudorotalia truncatulinoides の産出を記している。久手堅断面での Globigerina bulloides が一般的である。しかし、知念断面では頑難に、両者の層序断面に大きな差異はなく、より類似の環境下の堆積と考えている。さらに久手堅断面の上部から Globorotalia truncatulinoides の初出現を認め、上部へ向けて産出がふえるとする。それゆえに新里層の大部分を Blow (1969) の N. 21, 新里層の上部と知念層を N. 22 とした。

高安 (1976) は知念層を島尻層群の最上部におき、硫黄層群とは不整合で区別した。Noda (1976) と野田 (1977) は新里層の層序関係を見、直接する断面の詳細な検討から、両者の間には層序的関係がないと結論した。

茨木 (1979) は今回探った断面と同じ知念～久手堅の層序断面で、知念層の下 30 cm のところから Globorotalia truncatulinoides の産出し始めされることを報じ、N. 21 と N. 22 の境界にここにいる。

試料について

今回採集した試料は、沖縄本島南部・沖縄県島尻郡知念村の 3 露頭より得たものである。

1. CHINA: 番名集落の南西方、134 m 標高点付近のゴルフ場建設地。

2. KUDEKU: 久手堅、知念中学校グラウンド南側の崖。

3. CHINEN: 久手堅集落、74.4 m 水準点の東 200 m、国道 331 号線北側の崖。

第 1 地点の番名集落の露頭は、茨木 (1979) が知念～久手堅断面として示したものと一致する露頭と思われるが、試料採取当時はゴルフ場建設の整地工事の最終段階で、茨木 (1979) の示した下部はほとんど埋蔵され、今回採取された部分は層厚にして 63 m にすぎない。

上部の隕灰岩層は、茨木 (1979) が久手堅隕灰岩層とし、それより下部は隕灰層の母種ではない隕灰層とすることが、隕灰層層の上位は厚さ 2.5 m クロスタリアの発達した灰色泥質層と、その上に淡褐色砂岩層が重なる。全体に向直角は N25°E で、15°S の傾きを示し整合的である。隕灰層と知念層の境界は、クロスタリアの発達した灰色泥質層と淡褐色砂岩層の間に考えられている (茨木, 1979)。試料は本露頭の上部ではほぼ 1 m 間隔で、下部では 10 m 間隔で 38 試料を採取した。

第 2 地点は知念中学校グラウンド南側の崖で、層厚 10 m、走向 N 50°E で 10°N の傾きを示す。岩相的に第 1 地点の知念層に似た様相を示す。上部では褐色、下部では灰色の砂質泥岩ないしシルト岩よりなり、上部の褐色砂質泥岩中には、鉱物が散在する。この露頭では 50 cm 間隔で 16 試料を採取した。

第 3 地点は知念岬から久手堅への道路の北側の崖で、知念層の模式地である。厚さ約 10 m、見かけ上水平に見える。下部は鉱物が含んだ塊状の灰色砂岩で、上部では石灰質レンズないし石灰質礫塊が多く見つけることができる。この露頭では、50 cm 間隔で 18 試料を採取した。

以上の 3 露頭は直接連続しないが、全体的に知念層のゴルフ場建設地の層序が下位に、知念中学校グラウンドの露頭が中位に、知念岬の道路沿いの層序が上位に位置する考えられ、層位的にも大きくかけ離れていないと思われる。

化石の処理と観察

採取した試料は西田 (1975) の方法で処理し、石灰質サンプルを抽出した。抽出した試料を亜微細にし、イオンパッケージ法で処理したガラス片に拡げ、ヒーターで乾燥させる。この際ガラス片に載せる頑製試料の水量をできるだけ少なくし、乾燥距離を短かくすること。またガラス片上での試料の対流を防ぐため、ヒーターの温度を室温より 10 ～ 15 ～ 20 度程度高めに調節し、ゆっくり乾燥させる。このことにより顕微鏡下での表面観察が容易になる。
Fig. 1 Index map of sampling routes in the southern part of Okinawa-jima. The topographic maps "Yonabaru" & "Chinen" 1:25,000, in scale, published by Geographical Survey Institute are adopted.

沖縄南部でのナンノプランクトン群集
今回採集した試料から検出した石灰質ナンノプランクトンは44種に達し、そのうち生産型的に有効なものの
は9種であるが、沖縄南部のセクションで、出現あるいは消減の過程ではこのうち6種である。仮に新一更新統境界付近の石灰質環境におけるナノブランクトン層序を注目する。

本地域でナノブランクトン層序の上で重要なものとして、下位より次のものがある。Discoaster pentaradiatusの消滅（OK-247層）、Gephyrocapsa caribbeanicaの出現（OK-236層）、Gephyrocapsa protohuskeyの出現（OK-230層）、Cycloococcolithus macintyreiの消減（OK-217層）、Discoaster brouweriの消減（OK-216層）、Gephyrocapsa oceanicaの出現（OK-140層）。

産出例のこの地域からの初報告としてAcanthoica quadratopina、Anthosphaera oxyza、Calytracapsa catillifer、Coronosphera mediterranea、Discoaster turbifer、Sphaerocalyptra papillifera、Syracosphaera variabilis、Umbilicosphaera kuburtianaがある。とりわけAnthosphaera oxyza、Calytracapsa catillifer、Sphaerocalyptra papilliferaなどの化石としては保存され難く考えられるholococcolithの産出は注目される。また、Anthosphaera oxyzaの安定した産出は、その生活史とも関係して、ナノブランクトンの分類上、生層学上の検討材料を提供する。

これら他に今回分類した層序断面では、下部から上部へと続いて産出するものとして、Coccolithus pelagicus、Cycloococcolithus leptopora、Heliocoponotheca hyalina、Heliocoponotheca Kampneri、Pontothis decorrups、Pontothis japonica、Reticulofenestra japonicum、Reticulofenestra pacifica、Pseudoellipsoida lanuosa、Rhodobaculum claviger、Syracosphaera pulchra、Umbilicosphaera sibogaeがあり、散点的に産出するものとしてCeratolithus crassatus、Ceratolithus rugosus、Discolithina macropora、Heliocoponotheca wallischii、Scapholithus fossilis（=Anoplosolenia brasiliensis）その他もみられる。

今回検討した石灰質ナノブランクトン群集の変化からは、新里層と知念層の間には急激な変化が見られず、この点からも茨木（1975）、高安（1976）、Noda（1976）や野田（1977）の指摘した如く、両者は整合的なものと考えたい。

Gephyrocapsa oceanicaの出現時期について

ここでは、新一更新統境界を論じる際に問題となるDiscoaster brouweriの消減、Gephyrocapsa oceanicaの出現、Globorotalia truncatulinoidesの出現に限って議論する。他の多くの提案されている基準面は、この境界より離れた、あるいは地域的なもの、時間的に顕著なもの、データとしての地域について細かく報告されているが、他の地域では不足したうえにものが多いからである。

もっとも、今回のように従来の報告結果を再読しないと、特定の化石種について研究者間の同定が必ずしも一致していないため、それに基づいた議論も不安定なものとなりがちである。すなわち、A氏のa種はB氏のa種ではない、またC氏のb種はA氏のa種に近い、などとする分類上の見解の不一致に基づくものである。一見理路整然と分類記載され体系的だっているものに見えるが、現実は以上の如くで、微化石層序の分野で特に年代決定に有用とされている化石種の問題がある。しかし、今回は散 vadtで研究者間の同定の差違がないものとして取扱い、片っ向かえた考えかもしれないが、単独で他者の報告を一定の基礎に再検討することは不可能に近いし、恣意的な資料の取捨選択は筆者の好むところではない。資料の蓄積を基礎に発展してきたこの分野の自然科学の進歩に逆行するものと考えたからである。もっとも先人の業績を総括し、再検討を否定するものではない。研究発達の一段階として、今回の取扱い態度もまた意味があるだろうと思うからである。

Discoaster brouweriの絶滅とOlduvai Event

Discoaster属の絶滅の最後がDiscoaster brouweriであることは、もはや疑いの余地はない。また、その時期がOlduvai Event末期であること、多くの深海底コアおよび陸上セクションの研究から知られていている。たとえば熱帯の亜熱帯太平洋、大西洋のRC-220、V28-239、V24-59、CH61-171、V16-205、KH73-4-7、KH73-4-8などの深海底コア（Haq et al., 1977; Takayanagi et al., 1979）や、Takahama（1977）によるItalyのLe CastellaとSanta Maria di Catanzanoセクションの古地磁気層序と石灰質ナノブランクトンの産出頻度表を検討しても似た様子である。

このように低緯度域・中緯度域にかかわらずDiscoaster brouweriの絶滅は、Olduvai Event末期と考えてよさそうである。但し、中緯度域では一般にdiscoastersの産出頻度が高く、顕著な消滅の様相を示さないことが多い。

Globorotalia truncatulinoidesの出現とOlduvai Event

上記の深海底コアの多くでは、Globorotalia truncatulinoidesはOlduvai Eventの初期、あるいはその直前に出

NII-Electronic Library Service

このように中緯度地域では Globorotalia truncatulinoides の出現時期は，Olduvai Event の下限前面に限定されるようにみえる。ただし，TAKAYANAGI et al.（1979）によると，赤道太平洋において Globorotalia truncatulinoides の出現は Olduvai Event より上位にみられるとしている。

Globorotalia truncatulinoides と Discosaster brouweri の共存

したがって，熱帯～亜熱帯地域では，Discosaster brouweri と Globorotalia truncatulinoides の共存が，多くの層序断面において Olduvai Event を中心に認められる。この様子は，HAO et al.（1977）の示した太平洋と大西洋の例でも明らかである。

沖縄本島南部の知名～久手堅セクションで，戸木（1979）は久手堅層灰岩の直上のクッラブナの発達する石灰質シルトから砂層上部，すなわち知念層との境界より 30 cm のところの新里層最上部より Globorotalia truncatulinoides の初出現を報告している。

同じ層序断面で Discosaster brouweri は，久手堅層灰岩の直上，すなわち新里層最上部まで，下位から続続して産出し消減する。ここでは，Globorotalia truncatulinoides の初出現は層序学上約 2 m の間隔を示すが，ほとんど両者は入れ替わったと見なせよう。

今までのところ，この層序断面での公表された古地磁気層序は得られていないが，Olduvai Event 正帯磁帯は，この久手堅層灰岩の直上，あるいはこの周辺に関係される。

Gephyrocapsa group について

Gephyrocapsa group にまつわる問題については，GARTNER（1977）がよく総合している。生層位学的に McIntyre, BE & PREEKST（1967）が Gephyrocapsa 属の出現と Discosaster brouweri の絶滅の時期が，深海底コアでは一致するとして以来，鮮新一更新世境界を設定する有力な基準となっていた。しかし，Gephyrocapsa 属と discocoasters の共存が多層断面に，海洋底試料について気付かれ，再検討されてきた。

これらのうち，後の 3 種は Gephyrocapsa 属から他に移すべきものである。G. lumina と G. omega は G. oceanica の生態的な endmember と考えられ。生層位学的に有用でない。G. aperta については，G. oceanica の central structure が欠落したものをとみる。G. dentata，G. undulatus，G. gracilima は現生群集に限られるものであり，G. dentata は生態上の問題をもつ。

Fig. 2 Lithologic columns, sampling positions and stratigraphic distributions of important calcareous nanoplankton taxa obtained.
Fig. 3. Time-transgressive appearance of *Gephyrocapsa oceanica* Kastenman in western Pacific, with the control of the extinction level of *Disscoaster brouweri* (Okinawa). Palaeomagnetic record and fossil-track age. Horizontal lines in the range chart show the control of magnetic record and a line with *o* represents the control of fossil-track age.

Magnetic Stratigraphy

Absolute Age (Ma)

- C. Eq. Pacific
 - Garff (1973)
- W. Eq. Pacific
 - Kh73-4-7
 - Tokuyama et al. (1979)
- W. Pacific
 - DSDP 292
 - Ellis (1975)
 - Ujiie (1975)
- Okinawa
 - Present paper
 - Ibaraki (1979)
- Miyazaki
 - Nishida (1980)
 - Natori (1979)
- N. Philippine Sea
 - DSDP 296
 - Ellis (1975)
 - Ujiie (1975)
- Shizuoka
 - Nishida (1978)
 - Tsuchi & Ibaraki (1979)
- Boso A Choshi
 - Nishida (1977)
 - Oda (1977)
 - Mutoba (1967)
Gephyrocapsa oceanica の time-transgressive appearance

以上のように低緯度地域・中緯度地域を通じて，海洋底および陸上の多くの層序断面で Olduvai Event に伴って，Globorotalia truncatulinoides の出現在 Diaster brouweri の消滅と気候変化の背後にある。すなわち Olduvai Event の直後，あるいはその初期に Globorotalia truncatulinoides の出現が，Olduvai Event の中ないし末期に Diaster brouweri の消滅が定義される。次に Olduvai Event とこれらの酸化事件を中心に，Gephyrocapsa oceanica 出現の様相をたどる。

HAAK et al. (1977) によると，太平洋・大西洋の低緯度地域の深海底ヨ ロ RC11-220，CH1-61-171，V16-205，V12-18 では，Gephyrocapsa oceanica はすべて Olduvai Event 以後に出現し，Globorotalia truncatulinoides の出現に先立ち後，Diaster brouweri とは共存しない。

沖縄南部の知久一本島一知念の層序断面でも，古地磁気層序の報告はないが，同様の関係が確認される。すなわち Diaster brouweri は極限に泥岩層の直上で消滅し，Globorotalia truncatulinoides がそのやや上位より出現するが，Gephyrocapsa oceanica の出現は知念層の上部（OK-140 層面）で確認され，豊産の時期はおそらく泥岩石灰岩の堆積期に入ってからである。

フィリッピン海・九州一パラオ海嶺北端のDSDP Leg 31，Site 296 では，海底下 64 m 付近で Diaster brouweri が消滅し，入れ替わりに Gephyrocapsa oceanica の出現がみられるが（ELLIS, 1975），Globorotalia truncatulinoides の出現は同じく 68 m 付近である（UJIM, 1975）。

掛川地域では，土・塚木（1979）によると Globorotalia truncatulinoides は，掘込み層顶部の深場 Tuff の直下から出現する。この層の Fission track 年代は 1.9 Ma とされている（土・塚木，1979）。この地域での Gephyrocapsa oceanica の出現は，東葛津一掘之内一祝賀寺ルート，平尾一土方ルートとも深場 Tuff の上部で確認できる（西田，1978）。

房総半島では，Oda（1977）によると Globorotalia truncatulinoides の出現を大阪層中部に認め，新雄ほか（1972）が報告したこの付近の正帯磁帯を Olduvai Event に対応した。この地域での Gephyrocapsa oceanica の出現は，小雄川の支流波津の石灰層内で認められている（西田，1977b）。大阪層については検討されておらず，ここでの Globorotalia truncatulinoides 出現との前後関係の確認は今後残されている。

銭子地域での Globorotalia truncatulinoides の出現は倉南層下部，今日の春日層中盤に認められる（MAToba，1967）。Gephyrocapsa oceanica の出現は，下位の名洗層中盤に確認される（西田，1977b）。KoIZumi KANAYA（1976）が示した春日層の正帯磁帯を Olduvai Event に対応したことは的を射ている。

この様相は，Pliocene-Pleistocene 境界の模式地とされている Italy の Le Castella においても認められる。HAAK et al.（1977）はここで，Pliocene-Pleistocene 境界のmarker bed の著者より Globorotalia truncatulinoides を，その下位より Gephyrocapsa oceanica の産出を報告している。同じ層序断面で TAKAYAMA（1977）は，Calabrian 下部より Gephyrocapsa oceanica を検出している。Gephyrocapsa oceanica が Globorotalia truncatulinoides に先立って出現する様子は Santa Maria di Catanzaro でも確認されている（HAAK et al.，1977）。

世界各地での Globorotalia truncatulinoides，Diaster brouweri の産出層序と古地磁気層序の一致が示唆される。Gephyrocapsa oceanica の出現は，中緯度地域では早く，既に鮮新世末期に Olduvai Event に先立って出現し，一方他地域では Olduvai Event 後に出現する様子は確認されていない。このための原因は未解明である。Gephyrocapsa oceanica の出現時期は，緯度による異なり時間軸に斜交するらしいことは明らかに推察される。その詳細と原因の検討はこれからであろう。

文献

茨木雛子，1975 : 沖縄本島の新第三系・第四系について。静岡大学地球科学研究，1，1–9。

名取博夫，1979 : 宮崎地域・日本の新第三系の生ずる及び年代層序に関する基礎資料（土 隆一編），7–9。

———，石田正夫，福田 理，1971 : 島尻層群の浮遊性有孔虫層序，生物学会大会講演要旨，374。

新妻信明，木村勝弘，酒井豊三郎，1972 : 日本の油田ガス田の新第三系の自然気層序について。石油技術協会，37–7，411–415。

西田史朗，1973 : 南西諸島上部新生系石灰質超微化石群の予備的考察。地質学論集，8，65–75。

———，1975 : 超微化石と先進型電子顕微鏡。NOM (大阪府立化石研究会誌)，3，1–15。

———，1977 a : 琉球列島上部新生系の石灰質超微化石層序。海洋科学，9，525–529。

———，1977 b : 南関東下部更新統の石灰質超微化石層序。奈良教育大紀要，26–2，19–38。

———，1978 : 沖縄地域上部新生系の石灰質超微化石層序。同上，27–2，85–97。

———，1980 : 琉球列島上部新生系の石灰質超微化石層序。同上，30，(投稿中)。

———，1972 : Some fossil pteropoda from Miyazaki and Okinawa Prefecture, Southwest Japan. Ibid., 88, 472–484, pl. 57.

野田浩司，1977 : 沖縄本島南部における新第三系層厚の層厚関係及びその変化について。琉球列島の地質学研究（土 隆一編），2，55–60。

高安克己，1976 : 沖縄本島における第四系層序の再検討。琉球列島の地質学研究（土 隆一編），1，79–96。

士 隆一，茨木雛子，1979 : 島尻地域・日本の新第三系の生ずる及び年代層序に関する基礎資料（土 隆一編），12–14。

Explanation of plates

Scanning electron microscope photographs taken with HITACHI S-310 FE-SEM.
Scale bar represents 1 micrometer.

Plate I

Plate II

1. *Helicopontosphera kamptneri* HAY & MOHLER, Distal side of a pontolith. OK-111. NUESEM-S 1048.
14. *Acanthosphaera quatrospina* LOHMANN, Distal side of a rhabdolith. OK-140. NUESEM-S1053.