Geology of Daruma Volcano and adjacent areas, Izu Peninsula, Japan

Motomaro Shirao*

Abstract The Quaternary volcanoes in the northwestern part of the Izu Peninsula are described. The investigated area is underlain by the Neogene and the Quaternary volcanic rocks. The oldest rocks of this area are the Yugashima Group composed of the Miocene submarine volcanics and associated clastic sediments. The Pliocene volcanics are subaerial and are distributed in restricted areas as either lava flows (the Wakamatsu ski andesites, the Asahidaki basalts, and the Kamifunabara andesites) or lava flows with tuff breccias (the Uchiura andesites, the Kano andesites, and the Odoi andesites).

Among the Quaternary volcanoes, the Tanaba and the Ida volcanoes are composed of thin subaerial lava flows (less than 20 m) of basaltic andesites and volcanic breccias. The Osezaki volcano, over lain by the Ida volcano, consists of thin lava flows (less than 3 m) of andesitic basalts and tuff breccias. A vent of the Osezaki volcano, the Osezaki-south vent, was formed probably by repeated occurrences lava fountains of short durations. The Daruma volcano, resting on the Tanaba volcano, is composed of lava flows of basaltic andesites. The thickness of the lava flows ranges from 5 m to 60 m, and is thinner in the later stages. Lower flanks of the Daruma volcano are composed of unstratified poorly sorted tuff breccias, which were derived from the lava flows of the upper part of the volcano.

Two Quaternary scoria cones are present in the investigated area. The Sanagiyama scoria cone seems to be a flank volcano of either the Daruma or the Ida volcano. The Funabara scoria cone, on the eastern flank of the Tanaba volcano, is much younger than the Sanagiyama scoria cone. The tephra layers covering the northeastern flank of the Daruma volcano contain the pyroclastic flow deposits of Tokyo Pumice (TPf1) and CCP-4. Most tephras appear to have been supplied by the Hakone volcano. The youngest is the air-fall pumice from the Kawagodaira volcano, which covers all the deposits in the southeastern part of the investigated area. The Tanaba, the Daruma, the Osezaki, and the Ida volcanoes are presumed to be late Quaternary in age as judged by the magnetic, geomorphologic, and overlying tephra studies.

All the Quaternary volcanoes in the northwestern Izu Peninsula are subaerial, and characterized by the predominance of lava flows. They are in striking contrast to those of the northeastern Izu Peninsula, which comprise a considerable amount of tuff breccias, indicating more explosive activities.

Most of the dikes in the Ida and the Osezaki volcanoes, although restricted in number, and a hydrothermally altered zone in the Daruma volcano strike in a general north-south direction. It coincides with the strike of the active normal faults in the same area. Thus, the average direction of the maximum horizontal compression in the northwestern Izu Peninsula is presumed to have been north-south during the late Quaternary.
まえがき

伊豆半島には中新世以降の岩石が露出することが、そのほとんどは火山噴出物である。中新世のものは海成であるが、中新世以後には陸上に多数の火山体が形成された（沢村，1955a；久野，1952）。伊豆半島の地質については、西山（1886）が日本で最初の20万分の1図版を発表して以来、多くの研究がある。田山・新野（1930）は伊豆半島全体の層序区分を行った。伊豆半島の北部に限れば、久野・小池（1949）は湯ヶ島層群中の変成安山岩と修善寺白色凝灰岩の関係を明らかにした。また、Kuno（1938）は連絡火山の、増田（1961a，1961b）は井田火山・連絡火山の概要について報告した。棚塚火山以南では、赤坂（1977）の変成地質を中心とした報告がある。伊豆半島北西部全体的地質については沢村（1955a，1955b）の7万5千分の1沼津図版・5万分の1修善寺図版の報告があるが、棚塚火山・連絡火山・井田火山については概要が述べられているにすぎない。棚塚火山・連絡火山・井田火山の岩石については倉沢・昭野（1976）の報告がある。

伊豆半島北西部の火山については前述のようにいずれも概要が述べられているにすぎず、火山相互の上下関係・火山体の詳細には不明な点が多く残されていた。本報告ではこれらの点を明らかにするために、棚塚火山・連絡火山・井田火山・大瀬崎火山を中心として地质学的な記載をおこない、参考の考察を加える。調査地域をFig. 1に示す。

Fig. 1. Map showing the area investigated, and distribution of Quaternary volcanoes on the Izu Peninsula.

地 形

伊豆半島北部の火山は、半島中央を流れる狩野川をはさんで東西二つの火山列に分かれる。東列は箱根火山・湯河原火山・宇佐美火山・多賀火山からなり、西列は大瀬崎火山・井田火山・連絡火山が連なる。連絡火山（海拔982m）には、戸田新田付近を中心とする西に開いた直径4kmの馬蹄形カルデラがある（Fig. 2）。連絡火山の山頂から海拔700mまでの東側面はやや急で、それより低い東側面では火山原面が保存されており、約5°の傾斜で狩野川に達している。これに比べて西側は急狭で、比高100〜200mの帯が脈河原に面してい、棚塚火山は連絡火山に比べて開口が進んでおり、比較的平坦な東側面も火山原面を残していない。また、棚塚火山（海拔738m）を一端として、連絡火山とほぼ同規模の西に開いた馬蹄形カルデラがあるが、連絡火山のものはやや不明確である。若松崎・内浦崎・旭瀬・上船原付近に限られた地域に分布する火山岩類はより開口が進んでおり、急狭で谷密度が高いことから、それ以後の棚塚火山・連絡火山・井田火山などの火山体とは地形的にも明確に区別でき、分布域も推定できる。

地 質

伊豆半島北西部に露出する最古の地層は中新統下部の湯ヶ島層群（沢村，1955b）で、これを覆う限られた地域に火山角礫岩・凝灰角礫岩・溶岩が分布する、これらの火山岩類は分布が限られていることも、侵食や後の火山噴出物に覆われていることなどのため、原火山体の復元
は困難である。ここでは、火山としての地形を残している火山隆起を第四紀火山喷出物とし、これ以前の火山隆起を基盤岩層として記載する。地質図と地質柱面図をFig. 3 に示す。

1. 基盤岩類
(1) 湯ヶ島層群(田山・野野、1930)

遠山火山・板敷火山の東面側に広く分布し、粗粒角礫岩・凝灰質角礫岩・溶岩がなる。一般に南北に近い傾斜をもつ、20°以下のゆるい傾斜構造を示す。粗粒凝灰岩は主に北部に分布し、最大径 10 cm の凝灰石片を主とする群の基盤層からなることが多い。粗粒質で、凝灰岩と互層することもある。南側の上野原付近では凝灰岩質砂岩・凝灰角礫岩が卓越する。溶岩の岩質はシ羅輝石・普通輝石安山岩であるが、角閃石輝石をもつ角礫もしばしばみられる。本調査地域内の湯ヶ島層群は変質が少なく、比較的新鮮である。

(2) 内浦安山岩類(沢村、1955b)

内浦原地に広く分布し、溶岩 300 m を超える超伏に富んだ地を形成し、火山角礫岩・凝灰角礫岩・溶岩・貫岩体からなる。本調査地域内では南北で西に 10°以下で傾く傾斜構造を示す。本安山岩類には火山角礫岩・凝灰角礫岩が卓越する。角礫は径 1 m 以下さまざまな同種の岩の群からなる部分と、異種の岩片を多く含む部分があり、溶岩が薄く層理に乏しい。このことから、火山角礫岩・凝灰角礫岩は数段以上の火柱流(Andesite flow)の堆積物であると推定される。本安山岩類の下部は南方の吉本 1.3 km では、凝灰角礫岩が凝灰質砂岩・シイト岩と互層している。このことから、本安山岩類は初層に水洗に、それ陸上で堆積したと推定される。厚さ 10 m 以上の数枚の溶岩が厚い重層に見え、溶岩の厚さは 20 cm 前後の凝灰角礫岩が挟まれる。後期の東側には厚さ 100 m 以上の岩体がみられ、節理の方位などから貫入層体であると考えられる。本安山岩類の岩質はシ羅輝石・普通輝石安山岩である。

(3) 若松崎安山岩類(沢村、1955b)

若松崎付近の 1.6 km に露出し、2 枚以上の厚さ 60 m を超える溶岩からなる。溶岩は北に 10°前後で傾斜しており、溶岩の中に含まれる版状構造のシロム岩構造から推定される溶岩の流動方向も、北向きである。このことから、本安山岩類の形成後大きな傾動運動はなかったと推定される。岩質は斜長石とカオリン石の微細晶を含む粗粒凝灰質安山岩である。

(4) 旭延玄武岩類(沢村、1955b)

修善寺温泉の南東の岩盤に分布し、玄武岩質溶岩からなる。桜川ぞいの露頭では、本玄武岩類の板状構造を含む溶岩が、湯ヶ島層群中の粗粒凝灰岩の起源に富んだ侵食物を含む。岩質はカオリン石と斜長石の斑巻をまれに含む粗粒に乏しい層状玄武岩で、石基の輝石は単斜輝石である。

(5) 小土肥安山岩類(新称、仮称) Odoi Andesites

小土肥の東に 2 km にわたって分布し、溶岩・凝灰角礫岩からなる。沢村(1955b)の小土下安山岩類の北部に相当するが、今回の調査では南東との関係が不明なので、ここでは小土肥安山岩類として扱う。本安山岩類は、厚さ 10 m 以上の溶岩にそって同様の淘汰の悪い無層理の凝灰角礫岩が互層する。溶岩の供給源は不明である。本安山岩類は、小土肥海岸に遠山火山の後期溶岩に覆われる。洋州火山の上部構造は、境界付近が熱水変質をうけるため不明である。岩質は普通輝石・シ羅輝石安山岩で、径 2 ～ 4 mm の輝石の斑巻の目立つやや変質した岩である。

(6) 薩野安山岩類(沢村、1955b)

洋州火山の東側の下原付近に分布し、厚さ 5 ～ 20 m の溶岩と凝灰角礫岩からなる。大平梁在の南 0.5 km の沢では、湯ヶ島層群の白色粗粒岩の侵食面に薩野安山岩類の凝灰角礫岩が覆っている。岩質はシ羅輝石・普通輝石安山岩、カオリン石玄武岩からなり、一般にやや変質し、軽色を呈する。上部岩からも角礫にかけて、著しく熱水変質を受けた変質が薩野安山岩類に伴って分布する。径 1 ～ 5 mm の石英と斜長石の斑巻をもつが、変質がはげしいため石英の斑巻のみが目立つ。岩質の薩野安山岩類にも変質があおんでおり、このダイサイトは薩野安山岩類に貫入したものと考えられる。

(7) 上船原安山岩類(新称) Kamifunabara Andesites

船原温泉の西 2 km の船原新田に 0.7 km にわたって分布し、洋州にも小露頭がみられる。厚さ 60 m を超える 1 枚の溶岩からなり、不規則な柱状節理が発達する。洋州では洋州火山の火山角礫岩に覆われる。岩質は角閃石を含むシ羅輝石安山岩で、やや変質しているために粗灰岩を呈する。径 2 ～ 10 mm のゼノリスを多数含む。石基の輝石は斜方輝石である。

2. 第三紀火山噴出物
(1) 洋州火山噴出物(沢村、1955b)

洋州火山は遠山火山の南部に位置し、溶岩流・火山角礫岩・凝灰角礫岩からなる。下部は火山角礫岩・凝灰角礫岩に富むが、上部ほど溶岩流が卓越する。
Fig. 3. Geologic map of the northwestern Izu Peninsula.

<table>
<thead>
<tr>
<th>1</th>
<th>2a</th>
<th>2b</th>
<th>3</th>
<th>4a</th>
<th>4b</th>
<th>5</th>
<th>LEGEND</th>
</tr>
</thead>
</table>

溶岩流は塩田火山の東斜面に良好な露出をし、厚さは1 mから20 mにさかれる。3～10 mのものが多々みられる。溶岩流は中央塊状部とそれを形成する下部のクランカーからなる。クランカーのつくりは2次堆積物によって埋められている。溶岩流のあいだにはしばしば厚さ5 mの降火火山灰層が挟まれる。塩田火山の溶岩流は東斜面に東に、北東部では北ないように傾斜し、溶岩流の総延長は50 m以上と推定される。塩田火山下部の火山角礫岩は小さくて薄い2.5 km付近に良好に露出する。ここでは急激に厚さが乏しい火山角礫岩からなり、溶岩流を挟むとは思われない。角礫は径3～50 cmの同質角礫からなり、多孔質の角礫もみられる。岩片とマトリックスとの量比はほぼ1:1である。

塩田火山と下位との関係は塩田でみられ、上段原安山岩類の層状の安山岩を塩田火山の火山角礫岩が不整合に覆う。この火山角礫岩は、湯ケ島層の白色脈状角礫岩や上段原安山岩類の角礫閃石安山岩の径1 m以下の岩塊を含む。塩田火山が湯ケ島層群を被覆する基盤高さは、北東側の大平衡木付近で約200 m、土肥新田付近で約400 mで、西南西方向に高くなっている。塩田火山と上位との関係は土肥新田付近500 mの西伊豆スカイラインの近傍をみられる。ここでは塩田火山の著しく熱変質した火山岩を、厚さ10 mを超える塩田火山の新鮮な溶岩流が覆う。

著しい熱変質は平石を中心とする約4 km²の地域でみられ、岩石は白色あるいは赤褐色に変質し、弱酸性になっている。この変質域は約100 mの基盤帯を含む非変質地域に狭まり、この変質域の北部を覆う塩田火山の溶岩流は前進のようだまったく変質していないので、熱変質作用はおそらく後で述べる塩田火山の後期溶岩流の噴出以前に終わったと考えられる。塩田火山の噴出に伴う溶岩流の走向傾斜、熱変質帯の地質をその中央を基にした直径1.5 kmの侵食口状の地形があることなどから、平石付近と推定される。塩田火山の南部については調査ができたなかったが、南部にも別の噴出源が推定されている（沢村，1955b）。

塩田火山の溶岩流の巖相はシヤリ輝石・普通輝石安山岩と普通輝石・カンチソクリ岩な溶岩が示す。東側の斜面では、ある特定の層準に相当して多いことが少なくなく、両方の溶岩流がみられる。層準には、斜長石が多いが、肉眼では目立たない。カンチソクリの巖相には径3 mを超えるものもしばしばみられる。石英の輝石は斜方輝石である。

（2）速港火山噴出物（石原，1898）
速港火山は伊豆半島北西部のほぼ中央の速港山（海拔982 m）の頂上から約90 km²にわたって広がる火山である。速港火山の山体はほとんど溶岩流より、爆発的な活動によってできた降火火山碎屑物が高いかったと考えられる。ほとんどの溶岩流のみによって構成される山体が構成されている点では御所火山に近い。速港火山の最も古い基盤は湯ケ島層群の白色脈状岩・変成安山岩・暗色角礫岩で、速港火山の東山脈の頂上250 m以下の谷底に保存。速港火山の馬蹄形カルデラの内部および西海岸には湯ケ島層群に層を出していない。速港火山の溶岩流は、戸田新田を中心とする馬蹄形カルデラからほぼ西に5～15°で傾斜している。このことから、速港火山は噴出地点をほとんどの変えず、戸田新田付近から溶岩流のみを噴出したと推定される。沢村（1955b）は戸田新田の東北1 kmに火成堆積岩を報告しているが、今回の調査
では確認できなかった。

連鎖火山の噴出物は層積関係と堆積様式によって、前期溶岩流・後期溶岩流・山麓堆積物に分類した。このうち前期溶岩流は主として連鎖火山の馬蹄形カルデラ壊壊の海抜300m以下の部分に、後期溶岩流は前期溶岩流を芯としてそれより下に堆積して山体上部と西海岸に、山麓堆積物は東側に広く露出する。前期溶岩流と後期溶岩流は浸出しており、後期溶岩流と山麓堆積物はほぼ同じ時代にできたと考えられる。

a. 前期溶岩流

前期溶岩流は、連鎖火山の馬蹄形カルデラ壊壊の海抜300m以下の部分から戸田間にかけて分布する。数枚の厚さ60cmを超える厚い溶岩からなり、やや変質して暗灰色ないし灰色を呈する。前期溶岩流と後期溶岩流の関係は、戸田新田戸田平の間に在るカルデラ状でみられる。上位は溶岩の厚さが薄く、また変質もし少なく、後期溶岩流に浸出する。前期溶岩流の岩質は普通輝石・シノ輝石安山岩である。1〜2mmの斜長石の斑晶を含むが、変質しているため肉眼では目立たない。

b. 後期溶岩流

後期溶岩流は、前期溶岩流を覆って連鎖火山の山体上部と土肥戸田間に西海岸に分布する。後期溶岩流は50枚以上の溶岩流からなる。後期溶岩流は溶岩流の厳密な中央部分とその上位および下位の岩塊の集合体からなる。岩塊は径1〜2m以下で、それぞれが粘土化した細かなマトリックスによって埋められている。岩塊の集合体は一部に風化しているので凝灰質砂岩と見誤りやすい。しかし、すでにKuno（1938）が指摘しているように、岩塊の集合体は溶岩流の上部および下部の岩塊と、それが移動し細粒化して2次的に堆積したもののが集合体からなる。岩塊の集合体の体層は、溶岩流の中央部から状態が大きくなり、これら溶岩流の厳密な中央部とその前出の県間関係は、西海岸見の海食崖に良く露出する。溶岩流の中央部の厚さは、後期溶岩流のうちの下部は60cm前後で厚く、上部にいくほど薄くなる。上部にあたる連鎖山の山頂付近では平均5cmである。前述のように、溶岩流の噴出は連鎖火山の全活動期間を含めて戸田新田付近を中心に起こされたと考えられる。しかし、戸田平の南東0.5kmの溶岩流はここ傾向から外れるので、この付近に同様の噴出があったかもしれない。

連鎖火山には戸田新田を中心にとする長さ3km、幅300mの南北〜西南東に延びた熱帯変質帯がある。この熱帯水変質帯は前期溶岩流・後期溶岩流においては、連鎖火山には岩脈がきわめて少なく、戸田新田付近1.5kmの海底に1枚あるのみである。この岩脈は後期溶岩流と同じ岩質で、走向N60°W、ほぼ垂直、幅60cmである。

後期溶岩流の岩質は、下部ではシノ輝石・普通輝石安山岩で、上部ではこれに1mm前後のシノ輝石の斑晶を含む溶岩流が加わる。石英の輝石は斜長石と斜方輝石である。肉眼では青灰色を呈し、1〜3mmの斜長石の斑晶が目立つ。

c. 山麓堆積物

連鎖火山の山麓堆積物は海浜の裏に無層理ないし層理に乏しい凝灰質亜円錐状環境からなり、連鎖火山の東ないし南東側に広く分布する。この凝灰質亜円錐状環境は、連鎖火山の海抜100〜400mの山腹で後期溶岩流の岩塊集合体に浸出する。Fig.3では溶岩流が見られなくななる標高よりも低い地域を山麓堆積物としてある。

山麓堆積物は連鎖火山後期溶岩流の岩脈からなる亜円錐とその間を埋める細粒のマトリックスからなる。亜円錐は径2m以下で、1地点で観察される亜円錐は1枚の溶岩流に由来するものでなく、複数の溶岩流に由来するものである。山麓堆積物のマトリックスの厚さは全体の40〜60%で、高さ2mを超える連鎖堆積物の臨界においても、明らかに層理はみられず、現在の連鎖火山の東腹を流下したセンスの強いインプレッセーションをしばしばみられるのみである。これらの観察から、山麓堆積物は火砕流（Volcaniclastic flow）堆積物であると考えられる。また、連鎖火山には断層火山碎屑岩がほとんどないことに、山麓堆積物中に酸化赤色帯が見られるが、それらは非溶結であることに、後期溶岩流と山麓堆積物との堆積関係を考えあわせると、山麓堆積物は高温火砕流堆積物ではなく、低温の火砕流堆積物と考えられる。山麓堆積物は、後期溶岩流の上部および下部の岩塊・細粒化した岩塊集合体・崩壊した中央部下の集合体などが一団となって斜面を流下することが繰り返されて風化されたと推定される。

守屋（1975）は、赤城・霞名・八ヶ岳・利尻など10以上の成層火山では、かなりの部分が成層堆積亜円錐層からなり、これが火山台麓扇状地を形成していることを示した。成層堆積亜円錐層は岩脈が数種類の溶岩流からなる亜円錐であること、マトリックスは少なく酸化赤色帯が2次噴出孔が見られないなどの点で連鎖火山の山麓堆積物に似ている。しかし、成層堆積亜円錐層では0.5〜数mの単位で成層していること、岩脈の径が0.5m以
下と小さいなどの点で小麻山の山麓堆積物とは異な
る。下屋は成層酸灰亜角碎屑であるが、山頂付近には巣の変形の酸灰角礫岩があることをあげている。
山頂付近の山麓堆積物は成層構造を示さないのは、
小麻山が比較的厚い溶岩流のみならず、酸灰角礫岩の
ような細かな岩片ができにくく小さな単位で流動化し
にかかったために、一部動き出され大量の火山灰物
が流動化したことが原因と考えられる。前屋
(1968) は、ほとんどの溶岩のみならず地質特有の山脈
(長野県) の山麓が層理に乏しい正確層からできている
ことを示している。このような層理に乏しくマトリックス
の少ない酸角礫岩が、溶岩流のみならず火山の山麓
堆積物の一般的な特徴なのかかもしれない。

（3）大淵崎火山喷出物（新称） ejecta of Osezaki
volcano

大淵崎火山は伊豆半島の最北西部に位置し、大淵崎一
井田間の海食崖をその断面がみられる。溶灰塵全体のス
ケッチと平面図および図版する大淵崎南火山付近の拡大
平面図を Fig. 4 に示す。大淵崎火山は薄い小型溶岩流
を主体として、酸灰岩・酸灰角礫岩とそれらを貫く岩
脈・岩脈からなる。大淵崎火山の上部は北側でみられ、
40 枚以上の小型溶岩流からなる、溶岩流は厚さ 3 m 以
下で、やや発泡した中央塊状部としばしば直線の上下的"ア
クリンカー"からなり、北に 15°～30°で傾斜する。これ
ら溶岩流のうち少なくとも 12 枚は、その南側の大淵崎
南火山 (Fig. 4 の c, d) 前進から噴出している。大淵
崎南火山の南側では溶岩流は酸灰岩・酸灰角礫岩層を挟
み、傾斜は穏やかになる。さらにその下位には厚さ 50 m 以
上の酸灰の変形酸灰角礫岩がある。この酸灰角礫岩
岩わふ倾斜状は南ほど徐々に激しかなる。次に喷出流の
変形酸灰角礫岩厚さ地形により全体を粗で、高酸度
化によると思われる赤色化もみられるので、この地域
が噴出中心に非常に近いと考えられる。前述の走向の変
化から、噴出の中心は Fig. 4 の b 付近であると推定さ
れる。

この溶岩の悪い酸灰角礫岩の南 300 m と西 700 m の
地点には高さ 130 m を超える二つの顕著な岩体がある
(Fig. 4 の c と d)。これらの二つの岩体の北側には溶結した
火山流が集積しており、溶灰岩体に隣接する。これら
の岩体は中央の溶岩の悪い酸灰角礫岩とその直接の関係は不
明である。火成岩体と大淵崎火山の溶岩流の岩
質が異なることから、火山流の集積と溶灰岩体の隣接関
係などを判断して、これら二つの溶灰岩体は大淵崎火
山の噴出口が噴出物によって埋められ、溶結したものと
推定される。更に南側には北に傾斜した数枚の溶岩流が
あり、これを井田火山の溶岩流・酸灰角礫岩が不整合
(Fig. 4 の a) に覆っている。大淵崎火山の噴出物はす
べて陸上で噴出し、陸上で堆積したものである。このこ
とから、大淵崎火山の活動時には相対的な溶灰面が現在
より低かったと考えられる。

大淵崎火山の溶岩流の岩質は含 カンラン石・シノ輝
石・普通輝石安山岩質玄武岩で、石基の輝石は単斜輝石
と斜方輝石である。

（4）井田火山喷出物（沢村, 1955a）

井田火山は遠塩火山の北西に位置し、厚さ 20 m 以
下の溶岩流、酸灰角礫岩とそれらを貫く岩脈からなる。
井田火山噴出物は戸田一井田間の県道沿いと海岸、その
東側の山地の稜線内に良く露出する。井田火山噴出物
の北側は井田の東 0.6 km 付近でみられ、溶結の悪い酸
灰角礫岩・火山酸灰岩からなる。これらの溶結
で、幅は 50 cm 以下である。井田火山噴出物の上
部はほとんどが溶岩流で、厚い火山塊状部と下部の風
化した角礫流からなる。溶岩流の中央堆積物の厚さは
20 m 以下で、多数は 2 ～ 5 m である。ほとんどの溶
岩層は井田火山噴出物分布域の南部では西に、北部では
北に約 10° 傾斜しているので、井田の東南東 1.5 km の
侵食火口付近に噴出中心があったと推定される。

井田火山の溶岩流は、戸田の北西 0.8 km の海岸で
磨火山の前期溶岩流を覆っているが、後期溶岩流との直接の関係は不明である。また、磨火山の周囲もカルデラは井田火山の溶岩流・磨火山の前期・後期溶岩流を切っており、カルデラ上を横切って流れた溶岩流はみられない。これらを考えあわせると、井田火山の噴出がはじまるまでに磨火山は現在に近い大きさの火山体を形成しており、井田火山は磨火山の後期溶岩流とほぼ同時期に形成されたと考えられる。

井田火山の溶岩流の岩質はカンラン石安山岩質玄武岩とカンラン石・普通輝石安山岩質玄武岩である。高約 2〜4 mm の針状結晶を含み、石英の結晶は短い斜状である。

(5) 真城山スコリア丘噴出物（新称） ejecta of Sanagiya lava cone

真城山スコリア丘の噴出物は真城山の西 200 m 付近の溶岩地質に分布する（Fig. 5）。

Fig. 5. Map indicating the presumed center of the Sanagiya scoria cone on the western flank of Sanagiya.

Fig. 6. An outcrop (V3, Fig. 5) of the Sanagiya scoria cone.

1981—10

元 理

(6) 船原スコリア丘噴出物（地名，1955b）

船原スコリア丘は船廻火山の東側則原温泉の西 500 m 付近に位置し、比高約 200 m のスコリア丘と、付随する 2 枚の溶岩流からなる。これらの噴出物は、南では狩野安山岩類の一部の著しく熱水変質を受けたデイサイト、北では廻火山の溶岩流を覆う。船原スコリア丘は南北に延びたスコリア丘で、北部の溶岩は 436 m をピークとする細長い部分と南部の溶岩 300〜320 m の台地の部分に分けられる。436 m ピークに近づいたがってスコリアの粒径が大きくなること、安息角に達したスコリアの下層の傾斜方向に基づく判断すると、436 m ピーク付近に噴出中心があったと推定される。一般のスコリア丘の中央部にしばしばみられるアプラチャートはみられない、南側の台地は板状節理の発達した厚さ 7 m の灰白色のカンラン石安山岩質の溶岩流からなる。もう一枚の溶岩流は南東部の船原温泉付近にみられ、暗灰色の非晶質の溶岩流で、前述の溶岩流に次ぐようである。

荒牧・業室（1977）は船原スコリア丘を東伊豆単成火山群の一つとしている。船原スコリア丘はこの火山群の中の最西部に位置し、カワゴゼの降下経路に覆われる以外、東伊豆単成火山群の他の火山との関係は不明である。船原スコリア丘に付随する 2 枚の溶岩流は、南側の東流する船原川の流路を約 300 m 南に変えている。また、436 m ピークとするスコリア丘の円錐形の原形が良好保存されていることから、真城山スコリア丘と比べてはるかに新しいものと推定される。船原スコリア丘のスコリアとそれを覆うカワゴゼの降下経路の間には、厚さ 10 cm のテフラ層が挟まれ、渋佐・黒田（1970）はこのテフラを吉富火山のテフラとされている。しかし、富士山により近い連磨火山山麓には吉富土起源のテフラが
フラガはみられないことから、このテフラも次項の連続火山山北東山麓のテフラ同様、箱根火山起源のテフラと考えられる。

（7）連続火山山北東山麓のテフラ帯層

連続火山山北東山麓には、連続火山の山麓堆積層を覆って最大 8m のテフラ帯層が分布する。このうち最も新鮮な露頭（修善寺温泉西極西 4.5km、海拔 500m）の模式柱状断面が Fig. 7 に示す。この露頭では、連続火山の山麓堆積層を覆って、下から順に Da-1 から Da-9 までのテフラ層が重なり、最下部にはカワゴ平の傾斜堆積物（KgP；町田、1977a）がある。このテフラ層の間に風化土層が存在する。Fig. 7 の地点では Da-6 と Da-7 の間にゆるい傾斜不整合がみられるが、これ 100m 離れた地点では Da-4 の上に Da-8 が整合に重なっているので、その不整合は局地的なものであると考えられる。新鮮ななくらか露頭では Da-1、Da-4、Da-8、KgP 以外の岩盛を確認はむずかしい。ここでは特徴的なテフラ層である Da-1、Da-4、Da-8、Da-9 を記載し、他地域との対比を試みる。

Da-1 は厚さ 70cm のテフラ層で、新鮮な面ではクリーム色、風化した面では赤褐色を呈し、径 1〜2mm の軽石からなる。最下部に厚さ 1cm の炭質物の層があら、Da-4 は厚さ 40cm のテフラ層で、Da-1 と同様に新鮮な面ではクリーム色、風化した面では赤褐色を呈する。径 3mm 以下の軽石からなり、Da-1 に比べてやや粗粒である。内部に炭質物を含み、最下部にも数 cm の炭質物の層がある。修善寺町東北東の高尾山付近では、後述の TPfi の下位 110cm と 240cm に厚さ 25cm の不整をよくごろったオレンジ色のテフラ層が 2 枚ある。これら 2 枚のテフラ層は、層相の類似と層位からみて、Da-1 と Da-4 に同定されるよう。また、東伊豆単成火山群中の最下部付近には厚さ 45cm のオレンジ色の軽石層（オレンジバシス；柴室、1978b）があり、伊豆付近で層厚がほとんど変化しないことから、その供給源は遠方であると考えられている。北伊豆には厚い広域テフラがきわめて少なく、またその特徴的なテフラバシスは Da-1 か Da-4 のいずれかに同定されると考えられる。Da-1、Da-4 の堆積の時代は、後述の TPfi の下位の他に 1971 年 5 月 21 日（町田、鈴木、1977b）を含む。この間に挟まれる土壌の厚さと後述の連続火山の火山原面の保存状態から、数十万年間と推定される。Da-1、Da-4 は樹木図山以南にはみられないことから、その供給源は北方と考えられ、箱根火山の可能性が大きい。

Da-8 は沖浜の悪い特徴的なテフラ層で、Fig. 7 以外の地点では露頭面上下の土壌から突出していることが多い。最大径 5cm の軽石層や 1cm 前後の岩石片を持つ数かみ、長さ 10cm 以下の炭質物もしばしば含まれる。このテフラの有機質物はシロ輝石・普通輝石である。Da-8 は Fig. 7 の地点（海拔 500m）では厚さ 30cm、修善寺町東北東 5km の高尾山付近（海拔 300m）でも厚さ 30cm がある。Fig. 7 の地点では、箱根火山東山山麓ではみられない。これらの層位関係・層相・地質組成などから Da-8 は大仁付近では厚さ数 m の東京軽石の火砕坑堆積物（TPfi；町田、1977b）に同定される。

Da-9 はクリーム色をもつ褐色の厚さ 10cm 以下のテフラ層で、径 3mm 以下の軽石からなる。厚さが薄いため保存が悪く Fig. 7 の地点以外では確認できなかった。Da-9 は TPfi の上位に KgP の下位にあること、箱根火山から南南東に長軸をもつ CCF-4 の等厚等線図（町田、1977a）からみても CCF-4 に同定される可能性が大きい。

（8）カワゴ平下軽石層

カワゴ平下軽石層は湯ヶ島温泉の南東 5km、天城火山北斜面上の北側にたくさんの軽石 0.8km の火口である。カワゴ平下軽石層は調査地域の南部と東部を広く覆う、最も
新しい噴出物である。降下軽石層は径1 cm 以下の軽石からなり、灰色の角ばった黒鉄石片を多数含む。軽石層は粒度の異なる数層からなり、狩野川以西の地域では最大粒径はあまり変化しない。カワゴ平降下軽石層の層厚分布を Fig. 8 に示す。このうち狩野川以東の資料は栗室 (1980；未公表) による。藤島 (1969) はカワゴ平降下軽石層の等層厚線図を火口より東北－北北西－西の 3 方向へ長軸をもつ椭円の分布域の集合としている。しかし今回の調査では、東北－北北西のものは明らかでなく、西方に長軸をもつ椭円のみが確認された。カワゴ平火口の活動年代は、降下軽石の噴出直後に出した火砕流中の炭化水素から、2,830 ± 120°C Y. B. P. (Gak–523；Kigoshi & Endo, 1966) 3,250 ± 70°C Y. B. P. (TK–191；栗室, 1977) が知られている。伊豆半島北西部にはカワゴ平降下軽石層を覆う火山性堆積物はみられないので、約 3,000 年前以降、新たな火山活動や他地域からの大量のテフラの降下はなかったと考えられる。

第四紀火山形成に関する若干の考察

（1）大瀞崎南火道

一つの火道から短時間に十数回の噴出を行った通火道が大瀞崎火山中、大瀞崎から海岸や 0.5 km の地点に露出する (Figs. 4–9；Plate I の A–B)。このような火道は従来記載が少なく、また特徴的な活動を行なったと考えられるので、この火道を大瀞崎南火道と呼び、記載し成因を考察する。

大瀞崎火山の最北部、大瀞崎の付け根に、北に 15～30° で傾斜するアフ溶岩流が約 30 枚重なる (Fig. 4 の A)。この溶岩流は気泡をもつ中央堆状とその下のアクリンカーからなる。中央堆状の厚さは 0.5～3 m で、中央堆状の体積はアクリンカーの部分の体積よりもやや小さい。これらの溶岩流は南へ追跡すると、少なくとも下部の 15 枚は一つの緻密な岩体に収束してしま (Fig. 9 の 1)。この岩体は幅 8 m、高さ 10 m で岩脈状に南へ 50 m 以上ひびいている (Fig. 4 の C、Fig. 9 の 2)。北の溶岩流はこの岩体に近づくにつれて傾斜がゆるくなり、最後に反対方向に急傾斜してほぼ垂直に緻密な岩体に収束する。全体を緻密な岩体のむき出し側からみると、緻密な岩体が扇を上方に広げたようにして溶岩流に捲移している。溶岩流の中央堆状の厚さは、溶岩流が急傾斜になるにしたがって減じ、収束する部分では 5～20 cm で気泡をほとんど含まず、あいだに挟まれるクリンカーも径数 mm の細粒クリンカーで、細粒クリンカーどうしが溶融していることが多い (Plate II)。緻密な岩体の縁部では、溶岩流の中核堆状の収束した部分と細粒クリンカーの部分は幅数 cm の捲移帯をもって互層をなしている (Plate II–A) が、岩体の中央部では境界のない緻密な岩体である。

Fig. 8. Isopach map of the air-fall deposits (KgP) of Kawagodaira. The numbers indicate thickness of the deposits in centimeter. The solid circles without numbers indicate the existence of the deposits.

Fig. 9. Sketch of the Oseizaki-south vent from the sea (west).

岩体とそれに接する層状の構造は、その下位の溶灰岩層などが変形していないことと、溶岩流の中央部を岩体の残留融解方向が同じであることが、形成時の形を保っていると考えられる。クリンカー部分のずり落ちにより弱い分離がみられるところでは、ずり落ちの傾斜はほぼ水平角（約30°）であることから、クリンカーは現在の傾斜角でずり落ち堆積したもので、固結後も火道全体の傾斜はなかったと考えられる。この火道は大瀬崎火山の北斜面にあり、火口縁は北側で最も低い。

より標高の高い南方では、岩脈にのびた頸化岩体とつながる溶岩流は、火道の側面に張りつくようにして頸化岩体に完全に融合している（Fig. 9の右側の3）。また、溶岩流の中央面と外側面に分けてやや暗色の径数10 cmのふくらたレンズ状部分がみられ、特に中央部を車輪のようにに集約している。同様なレンズ構造は伊豆大島三原山山頂付近などの玄武岩質溶岩流に共通に観察される。これらのことを考えあわせると、これらの溶岩流は、ひとたび空中に放出され、落下したクリンカーが集積し、それが2次的なアフ溶岩流として流れれたものであると推定される。

以上のことから大瀬崎南火道の活動を推定し、図示したのが Fig. 10である。（1）はじめに北に20°傾斜する大瀬崎火山の山腹斜面に、南にのびた斜面が開いた。（2）斜面がスパイクの傾斜が始まり、落下したスパイクが集積して2次的なアフ溶岩流となり、山腹斜面を北に流れ。（3）最終の溶岩流の終了後、溶岩流が斜面を下に流れが止まった。（4）斜面は静穏期のもの。（5）溶岩流の活動を再びくりかえし、同様の活動が10数回以上くりかえされたのち、溶岩流が斜面のまま残存して活動を終了した。

歴史時代の日本では、このようなタイプの噴火活動の記録はない。ハワイのキラウエア・イキ1959年の溶岩流の活動が、やや規模が大きいが、大瀬崎南火道の活動に比較されるかもしれない。その比較を Table 1に示す。キラウエア・イキ1959年の活動はピットクレーター壁面での割れ目噴火に始まり、11月14日から12月19日までに合計17図の溶岩流の活動があった（Richter et al., 1970）。キラウエア・イキでは、噴出した溶岩がピットクレーターを埋めて火口に何回も流れ、火口の形が変化した。このために、現在の火孔壁の構造が活動期のどの時期の活動に対応するのか明確ではない。しかし、溶岩流の中央部を細粒クリンカーがほぼ直立して互層している大瀬崎南火道と同様の構造が火孔断面にみられた（1979年夏の観察）。大瀬崎南火道からの2次溶岩流のクリンカーの間には風化堆積物がまばらみられないので、かなり短時間（数ヶ月以内？）に大瀬崎南火道の活動は終了したと推定される。

（2）広域応力場

伊豆半島北西部の第四紀における応力場を復元する資料として、岩脈と断層がある。岩脈の走向は水平最大応力（σVmax）の方向に近い（Anderson, 1951）。伊豆半島北西部では周囲火山・連続火山系に岩脈はきわめて少なく、大瀬崎火山・井田火山に集中する。大瀬崎火山・井田火山は貫く岩脈の総数121枚で、その位置・方向をFig.11に示す。岩脈の傾斜はいずれもほぼ垂直である。大瀬崎火山を貫く岩脈は大瀬崎火山の溶岩流と同じ岩質で、かなり発泡したことが多い。1枚（大瀬崎南火道を埋める岩脈）は地表に噴出している。また幅200 mの岩脈は大瀬崎火山の岩脈と考えられる南側のもの（Fig.4のd）である。大瀬崎火山の岩脈の数は4枚で、その方向はN-S±20°である。

井田火山では、幅の狭い岩脈は風化が進んでいるためには岩質は不明であるが、新鮮な岩脈は1枚を除いて井田火山の溶岩流と同じ岩質である。1枚の例外は幅7 mの
Table 1. Comparison between the activities of Osezaki-south vent and Kilauea Iki, 1959.

<table>
<thead>
<tr>
<th></th>
<th>Osezaki-south vent</th>
<th>1959 vent of Kilauea Iki Richter et al. (1970)</th>
</tr>
</thead>
<tbody>
<tr>
<td>topographic setting</td>
<td>on a 20° dipping slope</td>
<td>on wall of a pit crater</td>
</tr>
<tr>
<td>SiO$_2$ content (wt%)</td>
<td>51.7%</td>
<td>46.68 - 50.07%</td>
</tr>
<tr>
<td>type of lava flows</td>
<td>aa</td>
<td>pahoehoe</td>
</tr>
<tr>
<td>horizontal dimension</td>
<td>8 m by 50 m+</td>
<td>a few m by 750 m at the beginning</td>
</tr>
<tr>
<td></td>
<td></td>
<td>15 m by 35 m at the end</td>
</tr>
<tr>
<td>number of eruptive phases</td>
<td>more than 16</td>
<td>17</td>
</tr>
<tr>
<td>duration of an eruptive phase</td>
<td>?</td>
<td>2 hours to 7 days</td>
</tr>
<tr>
<td>interval between eruptive phases</td>
<td>?</td>
<td>a few hours to 4 days</td>
</tr>
<tr>
<td>volume of erupted material</td>
<td>more than 0.5x106 m3</td>
<td>0.2x106 m3</td>
</tr>
</tbody>
</table>

*Kurasawa and Michino (1976)
†Murata and Richter (1966)

Fig. 11. Orientation and width of dikes in the Ida and Osezaki volcanoes. The numbers indicate width of dikes in meter.

岩脈で、長さ3mmの角閃石の斑晶をまばらに含む、井田火山の岩脈は、井田の東1.5km付近に集中して分布している。この付近には井田火山の侵食火口(Fig. 11の太破線)が推定されるので、これらの岩脈が放射状に分布しているようにみえる。この放射状の分布はN-S±20°とN70°E±10°の2方向に卓越している。

岩脈と同じように応力場を推定する資料となりうるものに、達磨火山の馬蹄形カルデラ内部のNNW-SSE方向にのびた熱水変質帯がある(Fig. 3)。熱水変質帯は熱水の移動により形成される。達磨火山形成時には熱水の移動を容易にする断層などの通路は少ないと考えられるので、変質帯の平面形が細長いほど熱源の平面形が細長いことを示すのである。熱水の移動はその場に働く応力の最大主応力軸方向に容易であると考えられるので、熱水変質帯の延長方向は岩脈と同じ意味をもつものと考えられる。

伊豆半島北西部の活断層はいずれも南北方向で正断層と考えられている(星野ほか, 1978)。これら岩脈・熱水変質帯の方向、活断層からみて、伊豆半島北西部ではおそらく第四紀後半以後現在まで、平均的には南北方向に水平最大圧縮軸（おそらくσ3）があるような圧縮応力場が存在したと推定される。

(3) 第四紀火山の年代

伊豆半島北西部の火山岩の放射性年代元素年代・フィッシュ・トラック年代について発表された値は皆無である。これは、この地域の岩が安山岩～安山岩質玄武岩でカリウムの量が1%以下と少ないこと、本地域に堆積した年代測定に利用できるテッラ層がきわめて少ないこと
となどに原因している。年代を推定する資料としては、わずかに連絡火山東東郷をもつ東京京知の火砕流堆積物がある。東京京知の年代は、1971年の研究によると、その後のテフラ層の厚さから連絡火山は10～20万年よりも古いと推定される程度である。

ここでは連絡火山の年代を推定するために、地形の侵蚀状態による方法（鈴木, 1969）を用いた。鈴木の方法は、まず残された火山原面を基準として谷の堆積法により火山体の原形の体積を復元し、侵食した体積と原形の体積の差（侵食比R）をとる。この差を年代既定の火山について求め、それに基づいてRと年代の関係を知り、この関係から当該火山の年代を推定する。鈴木（1969）はR = 0.1 のとき約10^4年、R = 0.2 のとき約10^5年、R = 0.3 のとき10^6年としているが、10^6年以上では信頼度が低くなるとしている。もとの地形が単調であったと考えられる連絡火山の東北側に鈴木の方法を適用するとR = 0.22で、これに対応する年代は3×10^6年となる。この値は、テフラ層から推定される連絡火山の活動終止期と矛盾しない。

年代推定のもう一つの手がかりとして、残留磁化方位の測定を構造火山・連絡火山・並田火山・大瀬崎火山の11カ所の岩石について行った。1カ所の溶岩流から5～7個のサンプルを採集し、自然残留磁化（NRM）および50～400°eで交流消磁を施した流の磁化をスピナーマグネット計で測定し、1地点ごとにもっともバラツキの小さい平均磁化方位から正逆を判断した。これにより、現地で従来型磁力計で測定した結果を加えてFig. 12に示す。この結果は、連絡火山前期溶岩流と後期溶岩流の最上部および構造火山は単純な、連絡火山後期溶岩流の大部分（中・下部）・井田火山・大瀬崎火山は正帯磁であった。これらの結果をCox（1969）、Kawai et al.（1972）らによる第四紀の地球磁場編年表に比（Fig. 13）してみると、連絡火山前期溶岩流と構造火山は松山逆磁極期に、連絡火山後期溶岩流・井田火山・大瀬崎火山はBrunhes 正磁極期と期待される。された正規化が大きい、これは連絡火山東斜面の火山原面の保存状態が良いことに対応して、構造火山東斜面の火山原面が保存されていないことと解釈的である。この対比が正しいとすると連絡火山最上部の溶岩流はBiwa IかBiwa II（Kawai et al., 1972）のイベント時に噴出したと考えられる。しかし、近年 Brunhes 正磁極期に接する溶岩流の磁化指向を考慮すれば、連絡火山の活動終止期を正確に推定することは可能である。

Fig. 12. Locations and magnetic polarities of the rocks of the Quaternary volcanoes in the northwestern Izu Peninsula.

Solid circle : normally magnetized, open circle : reversely magnetized, large circle : measured by a spinner magnetometer, small circle : measured by a portable magnetometer.

Fig. 13. A possible correlation of volcanic rocks of the present study to magnetic stratigraphy (Cox, 1969; Kawai et al., 1972).
極期に新たな逆側崩イベントが発見 (Yaskawa et al., 1973) され、その数も増加する傾向にあり、他のイベント中に噴出した可能性も否定できない。

以上に述べた地形、テフラ層による年代の推定は火山活動の年代の上限を、留磁格子方位は年代対比の可能性を示したにすぎないので、今後フィッショントラック法による年代測定が必要とされる。

ま と め

伊豆半島北西部の第四期火山活動のまとめを Fig. 14 に示す。この地域の火山はおそらく第四紀の後半に棚橋火山・達磨火山・井田火山の層に形成した。大瀬崎火山は井田火山より古いことのみしか明らかでない、いずれの火山も溶岩流を主体とした火山であり、高温火砕堆積物はまったくみられず、降下火砕堆積物も少ない。これは日本の他の地域の大型火山に降下火砕堆積物や高温火砕堆積物が多いと対照的である。棚橋火山・達磨火山はやや小型の多輪廻火山で、富士山のようないわゆる円錐形の成層火山ではなく、傾斜のゆるやかな稜状に近い火山である。井田火山は、ほぼできあがった達磨火山の北西側面に噴出したと推定される。大瀬崎火山はきわめて薄い (3 m以下) 多数の溶岩流からなり、その一部は溶岩製造から生じたと考えられる。達磨火山の馬蹄形カルデラは達磨火山・井田火山の活動末期に形成した。伊豆半島北西部での火山活動が終了したあと、この地域は

箱根火山起源と考えられるテフラによって薄く (8 m以下) 覆われた。

本報告では、地質学的な記載・考察を中心に行なったが、現在北伊豆全体のテフラの対比が進行中であり、この地域の岩石層学的研究とそれにを組合せて報告する予定である。

謝辞 本報告は東京大学大学院理学系研究科における修士論文をまとめたものである。その間、東京大学地震研究所中村一郎助教授・荒牧悟雄教授には終始御指導いただき、中村一郎助教授には草稿にも目を通していただいた。また、東京大学地震研究所小玉一之博士・松田時彦助教授、外務省産業開発局、東京都立大学町田洋助教授、金沢大学等山寺真雄教授、中央大学鈴木恒和教授には有益な御指摘をいただいた。これらの方々に深く感謝する。

文 献

赤崎政美、1977：伊豆半島中央西部の地質. 石山地質、27、307－321.
荒牧悟雄・栗田和親、1977：東伊豆半島火山群の地質. 地質学会報告、52、225－278.
栗田和親、1977：伊豆半島大室山城火山群地層と地質年代. 大室火山, 22, 277－278.
久野 久, 1952 : 7万5千年前の1熱海噴火. 地質調査所.
小池 清, 1949 : 前方部の火山活動について. 地質雑, 58, 28－32.

Fig. 14. Diagram showing the stratigraphic relations of the Quaternary volcanic rocks in the northwestern Izu Peninsula. The figures indicate the reconstructed volume above the present sea level.
町田 洋，1977 a：関東以西諸地域の示様テフラ層のカタログ. 日本の第四紀研究（日本第四紀学会編），378〜391，東京大学出版会.
———，1977 b：火山灰は誰の. 324p，柵樹書房，東京.
———，新井茂夫・村田明美・福田和夫，1974：関東における第四紀中期のテフラの対比とそれに基づく編年. 地学雑誌，83，22〜58.
———，1971：火山灰の絶対年代と第四紀後期の編年—フィッシュ・トラック法による試み—. 科学，41，269〜270.
増田幹鶴子，1961 a：井田火山的地質. 地学雑誌，24，3〜5.
———，1961 b：速麱火山的地質. 同上，25，31〜35.
守屋以雄，1968：赤城火山の地形及び地質. 65p，前橋菅林局.
———，1975：火山屬叢状地と成層義灰亜角輝層. 北海道駒沢大研究紀要，9・10 合併号，107〜126.

西山正吾，1886：20 万分の 1 伊豆図幅.
飯島輝彦，1969：伊豆半島の地質案内. 17p，静岡地学
沢村孝之助，1955 a：7 万 5 千分の 1 地質図幅「沼津」. 地質調査所.
———，1955 b：5 万分の 1 地質図幅「修善寺」. 地質調査所.
鈴木隆介，1969：日本における成層火山体の侵蝕速度. 火山，第 2 集，14，135〜137.
田山利三郎・新野 昌，1930：伊豆半島地質概報. 蒼藤学術報告会報告，no. 13，1〜81.
湯佐泰久・黒田 直，1970：伊豆一高根山，船崎山火山の地形と岩石. 静岡地学研究報告，2，43〜54.
Plate I
A: The Osezaki-south vent. View from south.
B: The Osezaki-south vent. View from north. Square indicates Plate II-A.

Plate II
A: Intercalated zone between convergent lava(flows) of the Osezaki-south vent. Square indicates Plate II-B.
B: Enlargement of the square in Plate II-A.