S-57 黒潮の流路変動—大蛇行と20年変動
(招待講演)川边正雄 (東京大学海洋研究所)
Kuroshio path variations—Large meander and bidecadal variations
Masaki Kawabe (ORI, The University of Tokyo)
北太平洋を時計回りに流れている暖帯状環流は、南西風域を形成し、東シナ海の大陵層が日本列島沿いに流れ、黒潮半島を回り、この海域を黒潮と呼ぶ。大蛇行を始めとする田村・本川での黒潮の流路変動は、漂着や海流などに大きく影響し、多くの人の関心を集めている。
黒潮の流路には、九州南方の大陵層の海底地形と伊豆半島が大きな影響を与える。田村・本川層の入り口に当るテトーラル海面では、50m 以前の海溝が島嶼から南部に広がっており、南南西に活発がある。これは、南部、北側から、それに対して、北極側での黒潮流路の正の曲率はそれぞれ小さい。
流路の曲率が小さいほど下流の流路は大きく変化せず、九州と田村の沖合で流れてゆくの一部を構成する。一方、へラル海面の南側を通過する流路の曲率の大きいときには、下流側の流路は反時計回りに大きく曲がって九州から田村に通じ、南南東に流れる非大蛇行流路となる。さらに、黒潮は田村半島の影響を受け、500m 以前の海溝の通過できる場所、つまり大蛇行する流路は変化する。
大蛇行流路の海城と海溝を通過した非大蛇行流路は、海城の大蛇行流路と海溝の大蛇行流路を通過することで、異常な大蛇行流路と呼ばれる。
これまで様々な観測事例によると、大蛇行流路の形成に必要な条件は次の三つである。①大蛇行流路の形を形成する九州から田村に伴う黒潮小蛇行流路の巻き、海城の流れが、九州半島で流れる流路と有力に相互作用すること、②カリフォルニア流路の海城が巻き込み、海流の曲率を小さく保つこと、③黒潮の流速が変動しにくいため、これらの条件を満たすと、大蛇行流路変動は大蛇行流路に遷移し、数年～10 年程度で黒潮の形を維持するのに対し、非大蛇行流路流路に遷移する (Kawabe, 2005)。
この時代は大西洋流路の変化による（図 1)

S-58 高分解能大気海洋結合モデルを用いた将来的温（招待講演）増やに対する黑潮の変動の特性について
坂本 天 (JAMSTEC, 地球環境フロンティア）
Responses of the Kuroshio to future global warming in a high-resolution climate model
Takashi T. SAKAMOTO (JAMSTEC, FRCGG, JAMSTEC)
はじめに
全球大気海洋結合モデルを用いた温暖化実験における黒潮及び黒潮構造の応答については、これまでほとんど研究されてきていなかった。その理由としては、大気海洋結合モデルを用いて長期観測を行うには、これまでの計算機の制限により 1° 程度のメッシュを採用することを必要とするからである。この理由の解消のための海洋モデルでは、高分解能度を実現するために、北極側で解消するという、现在の overstep problem がよくある。黑潮自体も幅広い西海岸境界流として表現されていたため、黑潮の変動を議論することは実現上不可能である。しかしながら、黒潮・黒潮構造の温暖化に対する応答は、水深変化の影響や大気海洋相互作用を通じた気候への影響を考慮すると、押しておきたいトピックである。
本講演では、黒潮が平均風速である地球温暖化結合モデルを用いた研究で、温暖化に伴う黒潮及び黒潮構造の応答について、Sakamoto et al. (2005) の内容を中心に紹介する。

モデルと結果
用いた数学は東北 CCSR、国立環境研、FRCGG, JAMSTEC で共同開発された MIROC 3.2 と呼ばれるモデルの解像度版であり、水平分解度では大気が 4°、海面は東北 14° 幅 16° である (K-1 model developers, 2004)。このモデルを用いた実験は、標準実験（積算時間 100 年）、CO2 減炭実験（21-50 年）、20 世紀再現実験、温暖化シナリオ実験 (SRES A1B 及び B1) の計 4 本である。これらの実験は全て地球シミュレータを用いて行った。
CO2 減炭実験と 2 本の温暖化シナリオ実験で、それぞれ標準実験及び 20 世紀再現実験で比較して黒潮の平均流路に大きな変化はないものの、黒潮及び黒潮構造の流路が大きくなる (図 2)。温暖化に伴う黒潮流路の増加は 20 cm/s 程度である (図 2)。
また、温暖化に伴って北太平洋暖帯状巻き全体が強化されているわけではなく (図 3), いわゆる再生生物域が強化されている (図 4)。これは温暖化に伴う風、特に偏西風が黒潮の流路 (流速) が増加するような変化をすることに加え、非線形相互作用を通じて気候が強化されるためである。

引用文献
K-1 model developers (2004): K-1 technical Report 1, CCSR, Univ. of Tokyo.