0-59 浮遊性有孔虫殻の重量分布に基づく最終水期における炭酸塩堆積の評価
入野秀久・大塚真美・平成学院大学（北海道大学）

Evaluation of carbonate dissolution during last glacial maximum based on weight distribution of planktonic foraminifer Tomohisa Irimo, Harumi Ota, and Tadamichi Oba (Hokkaido University)

Lohmann (1995) 以来、同様に一つ・異なるサイズの浮遊性有孔虫は一定した重さを持ち、その生物地域の表層水深域に応じた同位体・化学組成の殻を作成した後、沈降あるいは堆積堆積物の厚みが増すに従って二段階に変化し、その後の二次的解釈がそれぞれ、その二次的解釈の同位体・化学組成が表層水域で形成されたときの原始的な状態から変化していく。一方、Broecker は、Broecker et al. (1999) 以来、300-350 ㎛サイズにミクソームをそろえた浮遊性有孔虫殻の平均重量を、その原理する堆積物の水深における酸塩密度と良く相関することに基づいて、殻の平均重量の変化を成層堆積解釈モデルを用いた解析方法を提案している。したがって、浮遊性有孔虫殻の殻形状、海水や性状、海底で溶解できる物質についての重量変化については、殻の同位体・化学組成の安定同位体を用いる方法は、海水中で測定できる。海底での測定が可能で、しかも重さの変化が安定同位体を用いた測定で行うことができる。そこで実験においては、浮遊性有孔虫殻の重量を1個体ずつに計数することを通して、その重量分布の注目し、殻の重量変化の解析を試みたことである。

利用する浮遊性有孔虫殻の径が数mm〜数十μmであるので、1個体ずつの重量を計測するために、0.1 μmまで縮小することが可能な精度をもったを利用した。現在の海洋表層に生息中の有孔虫殻の1個体ずつの重量分布については、C. acculef とそのデータが公開されているため、本研究でもサトーパーオーシャン上で southwestern 堆積物から得られた堆積物コア 1689-3.9cm の堆積物で 100 m 以下の海水深と形成した酸塩型異常の重量解析を行った。すでに知られている生息中の有孔虫殻の殻の長さとその重量の関係は単純な係数を用いた関係性がある。これによって、化石あるいは死殻有孔虫殻についてもその長さから重量の推定ができる。

化石および実施した測定重量はいずれも予想される生息時の重量より重いことから、有孔虫殻の二次炭酸化が水中において既に進んでいることが分かった。また、有孔虫殻の重量分布は、生息しているものは対称な正規分布し、溶解放していないと考えられる新しい湖のコアから得られたものと水中に置い捨てた死殻では重量の大きさ高い方に偏った分布、溶解していると考えられる試料では重量の小さい方に偏った分布を持つことが分かった。

さらに最終水期の試料では、殻の平均重量がその値から予想されるよりも重くなっている。これは殻の重さが100 m 以上の海水深で溶けやすいことが示す。太平洋におけ 100 m 以上において現在よりも堆積するの有孔虫殻が重いのは、溶解が進んでいないので、二次炭酸化程度が大きかったためと推測される。

参考文献

0-60 堆積物相の精密放射線マッピング手法の開発
杉脇剛（北東北大学）、安田隆喜（知多大）、原野範行（広域大学）、長谷川龍（広域大学）

Development of Precise Radiation Mapping of Sedimentary Core
M. Saghara (Tohoku Univ.), H. Yasuda (Kochi Univ.) and N. Tsujioka (Tohoku Univ.)

高流速流形を含む放射線画像センサであるイメージンググレーディングイメージング（Imageing Plane；IP）によって地層鉱物の2次元計測が可能になった。新しい放射線計測装置としてマイクロX線走査顕微鏡、広範囲にわたる放射線計測装置でIPは、放射線効率を用いて他の測定方法より格段に優位性があるため、様々な分野での利用が期待されている (Hareyama et al. 2000; Takeda 2001)。本研究ではIPを堆積物の堆積測定に応用し、精密かつ広領域の堆積層構造評価を可能にするために計測計測装置等に検討した。

IPはBAS-M2004（富士写真フィルム）を使用し、これを50個×400mmに直方体状の放射線効率の2次元計測の装置であるイベントナローグラマ値（NGL）で測定を行った結果である。このIPを用いた堆積物相に対し分析を行い、堆積物相の放射線効率の2次元計測の装置であるイベントナローグラマ値（NGL）の推定を行った。Fig. 1 は海浜堆積物に対しIPと既存の放射線測定装置であるナチュラルカウンタグラマ値（NGL）で測定を行った結果である。このIPを用いた堆積物相に対し分析を行い、堆積物相の放射線効率の2次元計測の装置であるイベントナローグラマ値（NGL）で測定を行った結果である。このIPを用いた堆積物相に対し分析を行い、堆積物相の放射線効率の2次元計測の装置であるイベントナローグラマ値（NGL）で測定を行った結果である。このIPを用いた堆積物相に対し分析を行