老年者の延髄障害*

益子尚彦 村田睦男 岩田正一

神原道夫 栄川健造**

延髄は、諸中枢のある生命維持に重要な部位でありながら、臨床的にその障害を深く知ることが、はなはだむずかしい。著者は球麻痺の発症の遅れを示し、過去数年間、延髄の神経学的追求を行ない、延髄障害例では下部ネウロン障害像を高率に認めることを報告してきた。

今回は、老年者の延髄障害を多角的に追求した結果を報告する。

１) 臨床的に延髄障害の明らかた 51 例を 50 才以上の老年者（以下「老」）40 例と、それ以下（以下「若」）の 11 例に分けて対比したところ、①症状は两者合わせて構語障害が首位であるが、頭痛、嘔吐障害をともづき、②成因では两者とも、血管性原在性が高率であるが、「老」では脳血管性主で、高血圧、延髄性障害をもつこと、③延髄電図の検索で高率に下部ネウロン障害像を認めたこと等の結果をもとにして、典型例についてのべた。

２) 延髄障害の明らかでない某老人ホームの 60 才以上の高令者 50 症例の検討で、64% の率で舌脳細図で下部ネウロン障害像を認めた。

３) 血圧との関連があり、老年者の延髄障害例では高血圧のものが多いため、頭動脈瘤、高血圧、その前後のノルエピネフリン試験に対する血圧の上昇反応態度が球麻痺例では異なることをもとづき。

以上、老年者の延髄障害例では、少数例の発症疾患をのぞいては、動脈硬化を主とした血管性原在性例が多く、高血圧を有し、舌脳細図上、下部ネウロン障害像を高率に認めたが、一方、延髄障害の明らかな者に、舌脳細図上、かなりの率に下部ネウロン障害像を認められるところより、球麻痺にとらえる延髄部の潜在性障害の存在を考え、早くこれを舌脳細図により探知して治療面に抑え、球麻痺にいたらしめるようにすることが肝要であると考え、この点を強調したい。

I. 緒 言

延髄は、諸中枢のある生命維持に重要な部位**1•13•18）でありながら、臨床的にその障害を深く知ることは、はなはだむずかしい。

延髄に延髄細胞、とりわけ、舌下神経核は第 4 回室底にあり**, 延髄障害の極端な姿の球麻痺の場合に構語障害、舌突出不能が起こるところにヒントをえて、著者の 1 人益子**3•6•19•20）は過去十年余、舌下の神経細胞の研究を深めるため、その障害を深く知るための努力を凝めた。こと、そして球麻痺の場合に下部ネウロン障害像を観察に認めることを報告し、その価値を強調してきた。

今回は、老年者の延髄障害を多角的に追求したので、その結果についてのべる。

II. 延髄障害例の検討

天理病院神経内科の外来、および入院患者を中心に臨床的に延髄障害を考察し、約 51 症例を、50 才で細を引ぎ、50 才以上の 40 例について、それ以下の 11 症例と対照検討した（一部、京大時代の資料を用いた）。

50 才以上の老年者の年令、性別分析は、男 27 例、女 13 例であり、50 才代 19 例（男 12、女 7）、60 才代 15 例（男 12、女 3）、70 才代 6 例（男 3、女 3）であった。

１） 臨床症状：これらは老若を問わず問題であるので、51 症例全体についてまとめてみると、表 1 のごとくな
表 1. 延髄障害51症例の症状

<table>
<thead>
<tr>
<th>症状</th>
<th>数</th>
<th>発症率</th>
</tr>
</thead>
<tbody>
<tr>
<td>Dysarthria</td>
<td>41</td>
<td>80.4%</td>
</tr>
<tr>
<td>Headache</td>
<td>20</td>
<td>48.8%</td>
</tr>
<tr>
<td>Swallowing disturbance</td>
<td>18</td>
<td>43.9%</td>
</tr>
<tr>
<td>General malaise</td>
<td>15</td>
<td>36.6%</td>
</tr>
<tr>
<td>Shoulder stiffness</td>
<td>15</td>
<td>36.6%</td>
</tr>
<tr>
<td>Visual disturbance</td>
<td>13</td>
<td>31.7%</td>
</tr>
<tr>
<td>Nausea, Vomiting</td>
<td>11</td>
<td>26.8%</td>
</tr>
<tr>
<td>Hoarseness</td>
<td>9</td>
<td>21.9%</td>
</tr>
<tr>
<td>Dyspnea</td>
<td>9</td>
<td>21.9%</td>
</tr>
<tr>
<td>Nasal voice</td>
<td>9</td>
<td>21.9%</td>
</tr>
<tr>
<td>Palpitation</td>
<td>9</td>
<td>21.9%</td>
</tr>
<tr>
<td>Consciousness disturbance</td>
<td>8</td>
<td>19.5%</td>
</tr>
<tr>
<td>Chest pain</td>
<td>8</td>
<td>19.5%</td>
</tr>
<tr>
<td>Lacrimation, Salivation</td>
<td>7</td>
<td>17.0%</td>
</tr>
<tr>
<td>Dizziness</td>
<td>7</td>
<td>17.0%</td>
</tr>
<tr>
<td>Tinnitus</td>
<td>6</td>
<td>14.6%</td>
</tr>
<tr>
<td>Bradyarrhythmia</td>
<td>6</td>
<td>14.6%</td>
</tr>
<tr>
<td>Apnea</td>
<td>5</td>
<td>12.2%</td>
</tr>
<tr>
<td>Hiccough</td>
<td>4</td>
<td>9.8%</td>
</tr>
<tr>
<td>Aphonia</td>
<td>3</td>
<td>7.3%</td>
</tr>
</tbody>
</table>

表 2. 50才以上の老年者と、それ以下のものとの知見の対比

<table>
<thead>
<tr>
<th>病状</th>
<th>50才以上の老年者</th>
<th>40才以下の老年者</th>
<th>比率</th>
</tr>
</thead>
<tbody>
<tr>
<td>Hypertension (+)</td>
<td>22</td>
<td>10</td>
<td>9.1%</td>
</tr>
<tr>
<td>(-)</td>
<td>55</td>
<td>45%</td>
<td></td>
</tr>
<tr>
<td>Hemiparesis</td>
<td>L 8</td>
<td>20%</td>
<td>4</td>
</tr>
<tr>
<td>&/or</td>
<td>R 6</td>
<td>36.4%</td>
<td>5</td>
</tr>
<tr>
<td>hemiparesis</td>
<td></td>
<td>45.5%</td>
<td></td>
</tr>
<tr>
<td>Hyper-</td>
<td>14</td>
<td>38%</td>
<td>4</td>
</tr>
<tr>
<td>Cholesteroloma</td>
<td></td>
<td>50%</td>
<td></td>
</tr>
<tr>
<td>37 cases</td>
<td>23</td>
<td>62</td>
<td>4</td>
</tr>
<tr>
<td>Keith-Wagener I</td>
<td>11</td>
<td>35.5%</td>
<td>0</td>
</tr>
<tr>
<td>31 cases</td>
<td>II 15</td>
<td>48.4%</td>
<td>0</td>
</tr>
<tr>
<td>III 0</td>
<td>0</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>IV 0</td>
<td>0</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>Normal</td>
<td>5</td>
<td>16.1%</td>
<td>5</td>
</tr>
<tr>
<td>100%</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

表 3. 50才以上の老年者と、それ以下のものとの延髄障害発症原因の対比

<table>
<thead>
<tr>
<th>診断</th>
<th>50才以上の老年者</th>
<th>40才以下の老年者</th>
<th>比率</th>
</tr>
</thead>
<tbody>
<tr>
<td>Vascular</td>
<td>34 cases</td>
<td>85.0%</td>
<td>9 cases 82%</td>
</tr>
<tr>
<td>Thrombosis</td>
<td>13</td>
<td>38.3%</td>
<td>0</td>
</tr>
<tr>
<td>Bleeding</td>
<td>2</td>
<td>5.8%</td>
<td>1</td>
</tr>
<tr>
<td>Embolus</td>
<td>1</td>
<td>2.9%</td>
<td>6</td>
</tr>
<tr>
<td>CV lesion</td>
<td>18</td>
<td>53.0%</td>
<td>2</td>
</tr>
<tr>
<td>ALS</td>
<td>4</td>
<td>10.0%</td>
<td>0</td>
</tr>
<tr>
<td>Others</td>
<td>2</td>
<td>5.0%</td>
<td>2</td>
</tr>
</tbody>
</table>

上記(以下「若」と略す)に分けてみると、高血圧をもつのは、「老」では18例、45%と高いのに反し、 「若」では1例、9.1%にとどまり、半身不全麻痺は両者とも、左右差の比率に大差をみないが、「若」でやや高率であった。高コレステロール血症は「老」で38%に対し、「若」では50%と高率であるが、Keith-Wagener分類による低頭動脈硬化症は、「老」で、I、II度が35.5%、48.4%と高いが、III、IV度はなく、16.1%が正常範囲内にとどまった。一方、「若」では、抜栓5例とも、正常であった。

3) 発症成因：表3に示すごとくであるが、両者とも、血管原性の発症が高率で、「老」で85%、「若」で82%を占め、その内訳は、「老」では脳血栓が高率であるのに対し、「若」では脳栓塞の頻度が圧倒的に高かった。血栓、出血、栓塞の3者の分類に分けがたいものを脳腫瘍障害例(CV lesion)として一括した。その他として、「老」に筋萎縮性側索硬化症例(ALS)を4例、10.0%に認めた。

舌筋電図：「老」の40例中、舌筋電図を施行した37例についてみると、表4に示すごとく、下部ネュロン障害波形が29例、78.4%と高率で、その内訳は、Fibrillation波形7，16%，Giant spike波形8%，DMU9%、Follower potential10%等が高頻度に出現し、これら波形の併存例がかなりにみられた。その他、上部ネュロン障害、筋原性萎縮例が8.1%で低く、正常も5例、13.5%にとどまった。

次に、代表的症例についてふれる。

症例は、K. K., 56才の主婦。6〜7年前より、食事時や寒さ、疲労時、筋張緊張あり、3年前よりより水を呑むと鼻に逆流し、誤吸を舌がもれ周囲の人々に気づき、固いものをのみこめ状態に。血圧は、182/90mmHg。既往に著たくなく、遺伝歴に癌症因
表 4 老年者の延髄障害例 37 例の舌筋細電図所見

<table>
<thead>
<tr>
<th>Fibrillation potential</th>
<th>Giant spike, DMU, Follower potential</th>
<th>Poor MU, Grouping, Spont. discharge</th>
<th>Low amplitude MU</th>
<th>Normal response</th>
</tr>
</thead>
<tbody>
<tr>
<td>21 cases</td>
<td>24 cases</td>
<td>10 cases</td>
<td>5 cases</td>
<td>5 cases</td>
</tr>
<tr>
<td>57%</td>
<td>65%</td>
<td>27%</td>
<td>13.5%</td>
<td>13.5%</td>
</tr>
<tr>
<td>Lower motor neuron lesion</td>
<td>29 cases</td>
<td>78.4%</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

のみ陽性。舌に偏位ないが突出不能で、精一杯に出して排泄よりやや前方程度、長時間明で間隔収を認む。上下肢腱反射は一般に低下し、とくに異常反射を認めず、覚察障害なし。一般検査成績では、赤血球 378 万、Hb 80%、色素指数 1.05、白血球 4,000、凝固 17.2×104、ヘモグロビンに著変なし。赤沈 1° 11.2mm；尿尿に著変なし、血清ラド反応陰性；CRP（－）、ASLO 166 Todd U、RAT（－）；血清コレステロール値は総 184、エステル 115 mg/dl；血清蛋白は、総蛋白白 7.0、アルブミン 3.89、グロブリン α 0.64、β 0.78、γ 1.69 g/dl、A/G 比 1.25。血清クレアチニン 0.95 mg/dl、尿クレアチニン 20～45 mg/dl、クレアチニン 0.20 g/dl；血清 GOT 8 U 以下、GPT 5 U 以下；PBI 5.4 μg/dl；腎、肝機能よく、プロトロンピン時間、出血時間等正常。眼底動脈硬化度は K-W II 度。空腹時血糖 72 mg/dl。心電図、胸部 X 線で冠不全、左心肥大像を軽度に認む。腰椎穿刺で初圧 90 mmH₂O、5 ml 加で終圧 50、クェッケステスト正常反応、細胞数は 1 mm³ 当たり 3/δ でリンパ球のみ、蛋白は 24.5 mg/dl で、パンディ、ノンネ・エベルト陽性。糖正常値、脳液ワッ氏反応陰性。脳波で軽度の徐波 S-1（Gibbs & Gibbs）を両側同期性に認めるにとどまり、椎骨動脈写で、脳底動脈の屈曲、圧排、蛇行の知見が認められた。舌筋電図では、図 1 に示すとく、10 mV 程度の鋸歯波電位を両側性に認めた。脳底動脈硬化変化による延髄障害例と考えられる。

舌筋電図の下部ニューロン障害像と剖検時の延髄の神経核変化との対比は、ALS による球麻痺で死亡した 52 才の男子を詳しく検討したところ、図 2 に舌筋と口輪筋で認められた Fibrillation 電位を示すが、筋電図所見と当該脳神経核の細胞消失、グリア増殖知見の度合との対比で、表 5 に示すとくほぼ一致した結果を認めてい る。

III. 60 才以上の老年者の 50 例の検討

臨床的に、延髄障害像の明らかでない症例の検討を行なう目的で、某老人ホームの 60 才以上の老年者 50 例の舌筋電図を施行した。

結果は表 6 に示すとく、下部ニューロン障害像を 23.
日本老年医学雑誌 5巻3号 (1968:5)

表 5. ALS による球麻痺例の筋電図像と組織像との対比

<table>
<thead>
<tr>
<th>E</th>
<th>M</th>
<th>G</th>
<th>Histology</th>
</tr>
</thead>
<tbody>
<tr>
<td>Muscle</td>
<td>Lower motor NL</td>
<td>Involvement</td>
<td></td>
</tr>
<tr>
<td>N. XII</td>
<td>Tongue</td>
<td>L: Fb DMU</td>
<td>N cell disappeared</td>
</tr>
<tr>
<td></td>
<td></td>
<td>R: Fb</td>
<td>glosis</td>
</tr>
<tr>
<td>N. VII</td>
<td>Orb. oris oculi</td>
<td>L: DMU</td>
<td>N cell disappeared</td>
</tr>
<tr>
<td></td>
<td></td>
<td>R: Fb</td>
<td>glosis</td>
</tr>
<tr>
<td>N. V</td>
<td>Masseter</td>
<td>L: Syn DMU</td>
<td>N cell decreased</td>
</tr>
<tr>
<td></td>
<td></td>
<td>R: DMU</td>
<td></td>
</tr>
<tr>
<td>N. XI</td>
<td>Sternomastoid</td>
<td>L: Gr</td>
<td>N cell almost disappeared</td>
</tr>
<tr>
<td></td>
<td></td>
<td>R: DMU</td>
<td></td>
</tr>
</tbody>
</table>

例, 46% に認め, その内訳は Fibrillation 電位が 42% と高く, DMU, Follower Potential がこれに次いだ。上部神経障害像是, 11 例, 22% で, 正常反応は 16 例, 32% と有意に低かった。

IV. 血圧との関連

1) 舌筋に Fibrillation 電位を認めた 110 例の検討:
最高血圧が 150 mmHg 以上を示したもので 36 例あり, うち, 50 才以上の老年者の占める割合が 26 例, 72.2% と高く, 149 mmHg 以下の 74 例中, 老年者の占める割合は 26 例 35.1% と低かった。すなわち, 50 才以上の老年者では, 高血圧と舌筋 Fibrillation 電位出現とのあいだに相関性が認められた。

2) 頚動脈洞ブロックの時血圧の反応態度: ノルエピネフリン試験を混ぜながら, 両側の頚動脈洞ブロック (以下 CSB と略す) を施行し, 血圧, 脈搏の変動をみると図 3 に示すことところで対照例 (U.L. 57 才女) では上図のごとくになる。すなわち, 前状態の血圧を約 1 時間でわたって測定し, その後に 5 分間, Tilting 60°を施行して, 立位性の変動をみた。この折, 10 mmHg 程度の血圧下降を認めるが, すくまたこれに復する。その後, ノルエピネフリン 0.007 ml/kg を皮下に注射すると, 3 分ごろより血圧上昇を認め, Tilting により 20-40 mmHg の血圧下降をみるが, ほとんどことに復し, 約 1 時間で安定。その後, 再び前と同様の麻酔ブロックを両側に注射して行なうと血圧 (実線), 脈搏 (点線) は上昇し, 約 30-50 mmHg 上り, その後のノルエピネフリン試験 (以下 NA 試験と略す) ではさらに高い山 (10-20 mmHg) を造ってこれに復した。この間, 5 分間の Tilting では軽度の降下にとどまった。

表 6. 延髄障害の明らかない 50症例の筋電図所見

<table>
<thead>
<tr>
<th>Lower motor neuron lesion</th>
<th>Upper motor neuron lesion</th>
<th>Normal response</th>
</tr>
</thead>
<tbody>
<tr>
<td>Fibrillation</td>
<td>DMU</td>
<td>Follower Potential</td>
</tr>
<tr>
<td>21 cases</td>
<td>12</td>
<td>5</td>
</tr>
<tr>
<td>42%</td>
<td>24</td>
<td>10</td>
</tr>
<tr>
<td>total</td>
<td>23 cases</td>
<td>46%</td>
</tr>
</tbody>
</table>

図 3 顱動脈洞ブロック時の血圧（実線）および脈搏（点線）の変動（ノル・エピネフリン試験加味）

上図：対照例 下図：球麻痺例

この対照例の一連の動きに反して、球麻痺例（KI，50才女）では、図に示すとく、前NA試験に余り反応せず、CSBの折に適度に血圧の上昇をみ、ことに最高血圧で約70mmHgの上昇をきたし、その後のNA試験でもほとんど血圧上昇の反応を示さないという著明な差位を生じた。
V. 考 案
延髄障害の極端な変は球麻痹であるが，一足飛びにく
るのではなく，そこまで進む過程がある証であるが普通
の見方ではこれが判らない。舌筋は，Schiff(2)の犬での
舌下神経切断実験以来，よくみられ Fibrillation を眼で
みる唯一の場であるが，詳しくは，その他の波形の出現
と合わせての筋電図により検索すれば明確に分らない。著
者の 1 人益子(3，4)は，過去数十年に約 1,000 例の舌筋
電図を施行してきたが，患者を納得させればほとんどの
原因をなく実施でき，細部にわたる検討が可能である。重要
な方法を考える。そして，臨床的に明らかな球麻痹例で，
高率の下部ネウロノン障害波形を認める事は当然として，
症状のはっきりでていない高令頸において，46％
の割合より下部ネウロノン障害波形を認める事は，
その波形及び考え合わせて潜在性の障害像をとらえ
ているわけである。臨床的には，この球麻痹に至る前段階で
阻止し，よくする方法を考えなければならないと思う。
成因としては，変性疾患より，やはり神経硬化を根
底とする神経時障害，とりわけ，舌骨囊が多い。根本
的に解明するためには，変性疾患の原因追求と相まって
動脈硬化の成因の追求，および治療が重要な課題であら
う。ただし底部動脈硬化度の軽症例に多いことは注目を
ひく。

高血圧との関連は，やはり延髄に血圧調節中枢の存在
が考えられるため，この部の虚血状態が高血圧を生じし
める(3) とされ，当該例でも老年者で舌筋に Fibrilla-
tion の認められる群で高血圧者を多く認める。しかも，延
髄に調節中枢のある(4) 延髄動脈ブロック時の血圧変動
およびその前後でのノルエピネフリンに対する血圧の態
度の相異があること等は，今後さらに追求すべき興味あ
る事実と考える。

年をとっていくと，言葉が滑らかにしゃべれなくなって
たり，舌突出が十分でない人が割合にいるものである。球
症状としての構語障害，嘔下障害等の出現をとみると，
舌筋電図によって，その障害の有無，程度を判定して
未然に抑えていければと考える。今後は進歩していきたい。

VI. 総 括
1） 臨床的延髄障害の明らかな 51 症例を，50 才
以上の老年者 40 例と，それ以下の 11 例に分けた対比
し，①症状は両者合わせて構語障害が首位で，頭痛，嘔
下障害がつづき，②成因では多数例の変性疾患をのぞい
ては，両者とも血管原性が高率であるが老年者では脳
栓が主で，高血圧，脇底動脈硬化（軽症ながら）をも
つこと，③舌筋電図検査で高率に下部ネウロノン障害知
見をもっとこと等の結果を，典型例についてのべた。
2） 延髄障害の明らかでない某老人ホームの 60 才以
上の高令者 50 症例の検討で 46％の高率に舌筋電図で
下部ネウロノン障害波形を認めた。
3） 血圧との関連があり，老年者の延髄障害例では高
血圧のものが多いこと，頭動脈瘤ブロック，およびその
前処のノルエピネフリン試験に対する血圧の上昇反応態
度が球麻痹例では異なることをのべた。

VII. 結 語
老年者の延髄障害例では少数例の変性疾患によるもの
をのぞけば動脈硬化を根拠とした血管原性障害，とりわ
け，脳血栓が多く，高血圧を有し，舌筋電図上，下部
ネウロノン障害像を高率に認めた。一方，延髄障害の明ら
かでない高令者に，舌筋電図上かなりの率で下部ネウ
ロノン障害の認められるここより，球麻痹にいたる延髄の
障害過程における潜在性障害の存在，および舌筋電図の
重要性を強調し，早くこれを深くして治療面で，球
麻痹にいたらしめないようにすることが肝要であると
考える。

文献 1） Haymaker, W.: Bing's Local Diagnosis
in Neurological Diseases, 2nd ed., C. V. Mosby Co.,
St. Louis, 1956. 2） Ranson, S. W. and Clark,
3） 益子尚彦：延髄障害と舌筋電図，臨床神経，5:
411, 1965. 4） Mashiko, N.: Studies on clinical
electromyography. (II) Electromyogram of tongue
5） 益子尚彦その他：延髄遮蔽の Screening Test と
6） 益子尚彦その他：N. C. A. に於ける舌筋電図，
A. A.: Clinical Electromyography, San Lucas Press,
Los Angeles, 1955. 8） 益子尚彦その他：神経筋
疾患に関する研究，(I) 過去 10 年間の筋電図よりみ
9） Jasper, H. H. and Daly, D. D.: Baker's clinical
Although there are many important nerve centres in medulla oblongata, clinical detection for its lesions is very difficult. Since about 10 years, Mashiko, one of the author has done the electromyographic studies on tongue muscles. In the patients with bulbar lesions, findings of the lower motor neuron lesions were most frequently observed electromyographically.

Now, the authors studied on the bulbar lesions in aging.

Results obtained were as follows:
1) Fifty-one cases with bulbar lesions were separated in 2 groups; that is, 40 cases as aging above 50 years old and 12 cases below it. Comparative studies were done between these 2 groups.

a) Symptoms frequently appeared were in order to dysarthria, headache and swallowing disturbance. Dysarthria was seen in 80.4%.

b) In pathogenesis, vascular origins were very
frequent in both groups. In aging, cerebral thrombosis was frequently observed associating hypertension and arteriosclerosis in retina.

c) Findings of the lower motor neuron lesions were observed high frequently in tongue muscle electromyography.

2) In 50 cases above 70 years old being apparently healthy, findings of the lower motor neuron lesions were observed in 46% on the tongue muscle electromyograms.

3) Hypertension was frequently seen in the patients with bulbar lesions. Different responses for blood pressure changes were seen in bulbar lesions compared with controls.

If may be concluded that electromyography of the tongue muscles is useful tool in the detection of subclinical bulbar lesions in aging, and early therapy for subclinical bulbar lesions is very important problem.