In a previous paper the author reported on the chromosome complement in primary spermatocytes of Podapion gallicola Riley collected in Canada (Takenouchi, 1965). It has a meiotic chromosome formula of $10 + X_Y_p$ and the shape of the X_Y_p is somewhat different from that seen in most coleopteran families, including the majority of Curculionidae. In mid-July, 1961, Dr. S.G. Smith, Head, Section of Cytology and Genetics, Canada Department of Forestry and Rural Development, collected a single male of this species near Stamford, Connecticut, USA, made a slide according to his own method (Smith, 1943) and gave it to the author. The specimen was kindly identified as *Podapion gallicola* Riley by Mr. J.W. Brown, Entomology Research Institute, Canada Department of Agriculture, Ottawa.

Figs. 1 and 2. Chromosomes of *Podapion gallicola*. 1: Spermatogonial metaphase. 2: First meiotic metaphase. (X5,600).
The preparation has a few quite excellent spermatogonial metaphases and some first meiotic metaphases. The diploid complement shows 22 chromosomes of various sizes and shapes (Fig. 1). Excluding the six smallest elements, seriation in size is gradual but two are clearly larger than the others. Judging from first metaphases, the y is the smallest one in the complement but the X is obscure. Almost all, if not all, the chromosomes are metacentric. All the first metaphase plates were slightly earlier than those seen in the Canadian specimen (Takenouchi, 1965). There are 10 autosomal bivalents and an Xy_p complex of the atypical parachute shape (Fig. 2) recorded by Manna and Smith (1959) in Pissodes weevils. The difference in size of the bivalents is less evident than in spermatogonia and in comparison with the bivalents seen in the Canadian specimen. Almost all bivalents form rings at first metaphase and the size difference between the X and y is here not so evident.

The author is grateful to Dr. S.G. Smith for donating the slide and checking the manuscript.

LITERATURE CITED