加硫促進剤の研究（第44報）

遅滯性促進剤の研究（第9報）N—シクロ・ヘキシル・ベンゾチアゾール—2—スルペンアマイド他の促進剤との併用効果

（昭和30年1月8日 受理）

河 岡 豊*小 田 英 夫*

目的及び要旨

ゴム製品の配合を決定する場合、促進剤の併用については特に、各々の促進剤の特性に応じて、能率の増進、原価の引下げ及び操作の安全性（即ちスコーチの防止）、品質の向上等の諸点を充分考慮する必要がある。既にN—シクロ・ヘキシル・ベンゾチアゾール—2—スルペンアマイド（以下CM）とジフェニルグアニジン（以下D）及びテトラメチルチウラム・ダイサルファイド（以下TT）との併用は非常に優秀な併用効果を発揮することを明らかにしたが、1,2) 本報告においては更に上記の諸点を考慮し、CMにチアゾール系促進剤としてダイペンゾ・チアゾール・ダイサルファイド（以下DM）、アルデハイド・アミン系促進剤としてヘキサメチレン・テトラミン（以下H）を併用し、2種類或は3種類を併用した場合について、品質検討した。

その結果、後出の総括の項に記載した諸点を明らかにすることが出来た。この中、特に第1図の加硫曲線より明らかの如く、

CM : H=0.5 : 0.1（B試料）
CM : H=0.4 : 0.2（C試料）

の併用比の場合は、CM単独の場合（A試料）に比較して、スコーチの点に於てCMに劣らない悪い成績を示すばかりでなく、引張り強さ（TB）、モジュラス（M）はむしろCM単独よりも大きいことが判明した。

又第2図から明らかの如くCMの一部をDMで置換するとCM : DM=0.3 : 0.4（D試料）及びCM : DM=0.2 : 0.5（E試料）附近に於ては加硫速度は速くなり、最適加硫時に於けるTBはD試料は大きいが、平坦性はA試料（CM : DM=0.6 : 0.1）の方が良好である。一般にTBばかりでなく、モジュラス（M）はCMの多い程大きくなる傾向を有する。

（CM+DM+H）の3種促進剤について実験した3～6図の結果を見ると（CM+DM）に促進剤Hを併用すると（CM+DM）を活性化し、無汚染性の強力な加硫ゴムを得、平坦性（プラトー効果）の良好な結果をえた。

* 三新化学工業株式会社
実験の部

実験 36. (CM+H) の場合（第1図）
配合及び45lb/in²の蒸気圧で加硫した結果は第1図の通りである。なお最適加硫時の結果を一括して第1表に掲げた。

図の表示方式の中、直線の上端は引張り強さ（TB）、上端の数字は硬度（ショアー）、下端はモジュラス（M）、下端の数字は伸び（EB）を表し、Tv.は加硫時間である。促進剤の併用総量は0.6PHR（Parts per Hundred parts of Rubber）とした。

第 1 表

<table>
<thead>
<tr>
<th>併用比</th>
<th>試料</th>
<th>A</th>
<th>B</th>
<th>C</th>
<th>D</th>
<th>E</th>
<th>F</th>
<th>備考</th>
</tr>
</thead>
<tbody>
<tr>
<td>促進剤</td>
<td>CM</td>
<td>0.6</td>
<td>0.5</td>
<td>0.4</td>
<td>0.3</td>
<td>0.2</td>
<td>0.1</td>
<td>併用総量</td>
</tr>
<tr>
<td>H</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>0.6定</td>
</tr>
<tr>
<td>最に</td>
<td>時間（分）</td>
<td>20</td>
<td>20</td>
<td>20</td>
<td>30</td>
<td>30</td>
<td>40</td>
<td></td>
</tr>
<tr>
<td>適応</td>
<td>H（ショアー）</td>
<td>40</td>
<td>40</td>
<td>40</td>
<td>40</td>
<td>38</td>
<td>36</td>
<td></td>
</tr>
<tr>
<td>加け</td>
<td>TB（kg/cm²）</td>
<td>200</td>
<td>212</td>
<td>210</td>
<td>184</td>
<td>185</td>
<td></td>
<td></td>
</tr>
<tr>
<td>硫</td>
<td>E B（％）</td>
<td>710</td>
<td>709</td>
<td>710</td>
<td>687</td>
<td>696</td>
<td>753</td>
<td></td>
</tr>
<tr>
<td>時</td>
<td>M（300％）</td>
<td>17</td>
<td>18</td>
<td>18</td>
<td>19</td>
<td>16</td>
<td>14</td>
<td></td>
</tr>
<tr>
<td></td>
<td>M（500％）</td>
<td>50</td>
<td>59</td>
<td>58</td>
<td>60</td>
<td>50</td>
<td>40</td>
<td></td>
</tr>
</tbody>
</table>

第1図、及び第1表から明らかな如く、

(1) CM 単独（A試料）に比較して（CM+H）（B～F試料）は初期加硫は大差ないことが分る。（5分、10分の場合）

(2) 周知のように促進剤Hは弱促進剤で加硫に長時間を要するが、少量のCMを併用すると加硫時間は著しく短縮される（E、F試料）。B、C試料はCM 単独（A試料）と同じく最適加硫時間は20分である。CMに大量のHを併用した場合（F試料）は最適加硫時間が40分と若干遅れる。

(3) B及びC試料はTB（Tensile Strength at Break）のみならず、M（Modulus）もA試料に比較して大きく平坦性も良好である。

(4) （CM+H）の併用は無汚染性である。

第 2 表

<table>
<thead>
<tr>
<th>併用比</th>
<th>試料</th>
<th>A</th>
<th>B</th>
<th>C</th>
<th>D</th>
<th>E</th>
<th>F</th>
<th>備考</th>
</tr>
</thead>
<tbody>
<tr>
<td>促進剤</td>
<td>CM</td>
<td>0.6</td>
<td>0.5</td>
<td>0.4</td>
<td>0.3</td>
<td>0.2</td>
<td>0.1</td>
<td>併用総量</td>
</tr>
<tr>
<td>DM</td>
<td></td>
<td>0.1</td>
<td>0.2</td>
<td>0.3</td>
<td>0.4</td>
<td>0.5</td>
<td>0.6</td>
<td>0.7定</td>
</tr>
<tr>
<td>最に</td>
<td>時間（分）</td>
<td>20</td>
<td>20</td>
<td>20</td>
<td>10</td>
<td>10</td>
<td>20</td>
<td></td>
</tr>
<tr>
<td>適応</td>
<td>H（ショアー）</td>
<td>42</td>
<td>42</td>
<td>42</td>
<td>36</td>
<td>36</td>
<td>40</td>
<td></td>
</tr>
<tr>
<td>加け</td>
<td>TB（kg/cm²）</td>
<td>206</td>
<td>196</td>
<td>200</td>
<td>204</td>
<td>184</td>
<td>177</td>
<td></td>
</tr>
<tr>
<td>硫</td>
<td>E B（％）</td>
<td>682</td>
<td>687</td>
<td>695</td>
<td>766</td>
<td>759</td>
<td>717</td>
<td></td>
</tr>
<tr>
<td>時</td>
<td>M（300％）</td>
<td>21</td>
<td>21</td>
<td>20</td>
<td>15</td>
<td>14</td>
<td>17</td>
<td></td>
</tr>
<tr>
<td></td>
<td>M（650％）</td>
<td>185</td>
<td>167</td>
<td>163</td>
<td>113</td>
<td>103</td>
<td>127</td>
<td></td>
</tr>
</tbody>
</table>
実験 37. （CM+DM）の場合（第2図）
基礎配合に於て（CM+DM）の併用総量は0.7PHR一定、45lb/in²蒸気圧で加硫した結果は第2図の通りである。前実験と同じく、最適加硫時に於ける結果を第2表に一括した。
第2図、第2表から次の事柄が明らかとなった。
(1) D, E試料は最適加硫時間を10分で、若干早く、CMに対しDMが多い程初期加硫も加硫速度もわずかに早くなる傾向がある。
(2) TBはA, D試料は最も大きく、CMに対しDMが特に多くなる場合TBは小さくなる傾向がある（F試料）。モジュラスはCMの多い程大きい。
(3) 特異な点と思われるのはD, E試料は伸びが特に大きいことである。
(4) CMとDMの併用に於ては平坦性は特に良くもないし、悪くなる傾向も認められない。
(5) 促進単価は若干引下がることが出来る。
実験 38. （CM+DM+H）の場合（その1）（第3図）
配合並びに45lb/in²蒸気圧で加硫した結果は第3図の通りである。今後の実験に於ては、促進剤の使用総量0.7PHR一定、基礎配合で行った。促進剤の併用比は第3表の如くである。
第3表、第3図から明らかの如く、CM:DM = 4:3 と一定とし、促進剤Hを漸次増加した結果、
(1) 加硫時間はA及びE試料は共に30分、他はいずれも20分であり、初期加硫はいずれも大差ない。
(2) E試料（H=30部分）はTBばかりでなく、モジュラスも最も大きい。
実験 39. （CM+DM+H）の場合（その2）（第4図）
配合及び45lb/in²蒸気圧で加硫した結果は第4図の如くである。前実験との相違は促進剤の併用比を
第4表の如く、H=30部分一定の場合、CM, DMの比率を変化したことである。
第4図並びに第7表の総括の項から明らかの如く、
(1) 最適加硫時間はいずれも20分である。
最も大きい。
(3) モジュラスはCMの増加する程大きく、伸びは逆にCMの減少する程大きくなることが判った。
実験 40. （CM+DM+H）の場合（その3）（第5図）
配合、並びに加硫結果は第5図（その1〜2）の如くである。促進剤の比率は第5表の如く、促進剤
Hを漸増した。
第5図（その1〜2）、第7表から明らかの如く、
第28巻第7号
河岡豊・小田英夫

第5表

<table>
<thead>
<tr>
<th>試料</th>
<th>A</th>
<th>B</th>
<th>C</th>
<th>D</th>
<th>E</th>
<th>F</th>
<th>G</th>
<th>H</th>
<th>J</th>
<th>備考</th>
</tr>
</thead>
<tbody>
<tr>
<td>CM</td>
<td>10</td>
<td>10</td>
<td>10</td>
<td>10</td>
<td>10</td>
<td>10</td>
<td>10</td>
<td>10</td>
<td>10</td>
<td>一定</td>
</tr>
<tr>
<td>DM</td>
<td>60</td>
<td>60</td>
<td>60</td>
<td>60</td>
<td>60</td>
<td>60</td>
<td>60</td>
<td>60</td>
<td>60</td>
<td>一定</td>
</tr>
<tr>
<td>H</td>
<td>10</td>
<td>15</td>
<td>20</td>
<td>25</td>
<td>30</td>
<td>35</td>
<td>40</td>
<td>45</td>
<td>50</td>
<td>増減</td>
</tr>
</tbody>
</table>

(1) G, H, J 試料の最適加硫時間が10分で、若干早く、促進剤のH増加に従って、加硫が早くなる。
(2) T BはE試料が最も大きく、モジュラスはいずれも大差ない。
(3) H試料は平坦性が非常に良好であるばかりでなく、伸びも最も大きい。
実験41. (CM+DM+H)の場合（その4）（第6図）
各促進剤の併用比は、第6表の如くである。促進剤の促進総量は前実験と同様、0.7PHRである。

第6表

<table>
<thead>
<tr>
<th>試料</th>
<th>A</th>
<th>B</th>
<th>C</th>
<th>D</th>
<th>E</th>
<th>F</th>
<th>G</th>
<th>H</th>
<th>J</th>
<th>備考</th>
</tr>
</thead>
<tbody>
<tr>
<td>CM</td>
<td>10</td>
<td>15</td>
<td>20</td>
<td>25</td>
<td>30</td>
<td>35</td>
<td>40</td>
<td>50</td>
<td>60</td>
<td>減増</td>
</tr>
<tr>
<td>DM</td>
<td>60</td>
<td>55</td>
<td>50</td>
<td>45</td>
<td>40</td>
<td>35</td>
<td>30</td>
<td>20</td>
<td>10</td>
<td>減減</td>
</tr>
<tr>
<td>H</td>
<td>45</td>
<td>45</td>
<td>45</td>
<td>45</td>
<td>45</td>
<td>45</td>
<td>45</td>
<td>45</td>
<td>45</td>
<td>一定</td>
</tr>
</tbody>
</table>

第6図（その1～2）、第7表から明らかの如く、
(1) 加硫時間はいずれも20分であるが、初期加硫はCM多い程若干おそい。
(2) A及D試料はT Bは最も大きい。モジュラスはいずれも大差ない。
(3) 伸びはA試料は最も大きく、一般にDMの多い程大きい。
(4) G, H, J 試料から明らかの如く、CMが特に多い場合、加硫短りの傾向を示す。

総括

以上（CM+H）、（CM+DM）、（CM+DM+H）の併用効果について、実験した結果を総括すると、
(1) 少量の促進剤HはCMの遅滞性に影響することなく、CMを活性化する。
(2) 第1図、第2図は直接比較することは出来ないが、DMにCMを併用すると、モジュラスは大きくなる。CMに少量のDMを併用しても、スコールの点のみならず、T BもCM単独と大差ない。CMに対して、わずかにDMの多い場合、即ちCM: DM=0.3: 0.4に於てはCMはDMを更に活性化するか、若干加硫速度が早くなる。
(3) （CM+DM+H）の場合、最適加硫時における実験結果は第7表の通りである。即ち
（i）実験38、39及実験40から、促進剤HはCM、DMの比率にかかわらず、H＝30部の場合、T Bばかりでなく、モジュラスも非常に大きい。又、促進剤Hが一定の場合、CMがDMに対して多い程、T Bばかりでなく、特にモジュラスは大きい。
（ii）実験38、及び実験44から、DM＝Hの場合最も増強されるようである。

（29）

411
加硫促進剤の研究

第1図

第2図

第3図

第4図
(iii) 実験40から少量のCMを3種類併用しても、非常に活性化することが判明した。この場合、H試料は最も平担性の良い結果を得た。
(iv) 加硫時間は殆ど20分で大差なく、伸びは促進剤Hの多い程、大きいことが分かる。

<table>
<thead>
<tr>
<th>実験番号及び図表</th>
<th>試料</th>
<th>併用比</th>
<th>最適加硫時における</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>CM</td>
<td>DM</td>
<td>H</td>
</tr>
<tr>
<td>実験38第3図</td>
<td>A</td>
<td>40</td>
<td>30</td>
</tr>
<tr>
<td></td>
<td>B</td>
<td>40</td>
<td>30</td>
</tr>
<tr>
<td></td>
<td>C</td>
<td>40</td>
<td>30</td>
</tr>
<tr>
<td></td>
<td>D</td>
<td>40</td>
<td>30</td>
</tr>
<tr>
<td></td>
<td>E</td>
<td>40</td>
<td>30</td>
</tr>
<tr>
<td>実験39第4図</td>
<td>A</td>
<td>10</td>
<td>60</td>
</tr>
<tr>
<td></td>
<td>B</td>
<td>20</td>
<td>50</td>
</tr>
<tr>
<td></td>
<td>C</td>
<td>30</td>
<td>40</td>
</tr>
<tr>
<td></td>
<td>D</td>
<td>40</td>
<td>30</td>
</tr>
<tr>
<td></td>
<td>E</td>
<td>50</td>
<td>20</td>
</tr>
<tr>
<td></td>
<td>F</td>
<td>60</td>
<td>10</td>
</tr>
<tr>
<td>実験40第5図</td>
<td>A</td>
<td>10</td>
<td>60</td>
</tr>
<tr>
<td></td>
<td>B</td>
<td>10</td>
<td>60</td>
</tr>
<tr>
<td></td>
<td>C</td>
<td>10</td>
<td>60</td>
</tr>
<tr>
<td></td>
<td>D</td>
<td>10</td>
<td>60</td>
</tr>
<tr>
<td></td>
<td>E</td>
<td>10</td>
<td>60</td>
</tr>
<tr>
<td></td>
<td>F</td>
<td>10</td>
<td>60</td>
</tr>
<tr>
<td></td>
<td>G</td>
<td>10</td>
<td>60</td>
</tr>
<tr>
<td></td>
<td>H</td>
<td>10</td>
<td>60</td>
</tr>
<tr>
<td></td>
<td>J</td>
<td>10</td>
<td>60</td>
</tr>
<tr>
<td>実験41第6図</td>
<td>A</td>
<td>10</td>
<td>60</td>
</tr>
<tr>
<td></td>
<td>B</td>
<td>15</td>
<td>55</td>
</tr>
<tr>
<td></td>
<td>C</td>
<td>20</td>
<td>50</td>
</tr>
<tr>
<td></td>
<td>D</td>
<td>25</td>
<td>45</td>
</tr>
<tr>
<td></td>
<td>E</td>
<td>30</td>
<td>40</td>
</tr>
<tr>
<td></td>
<td>F</td>
<td>35</td>
<td>35</td>
</tr>
<tr>
<td></td>
<td>G</td>
<td>40</td>
<td>30</td>
</tr>
<tr>
<td></td>
<td>H</td>
<td>50</td>
<td>20</td>
</tr>
<tr>
<td></td>
<td>J</td>
<td>60</td>
<td>10</td>
</tr>
</tbody>
</table>

文献
1) 河岡：ゴム協 26, No. 4, 222 (1953)
2) 河岡：ゴム協 26, No. 9, 519 (1953)
（昭和29年12月10日 関東支部講演）
When the recipe of a rubber compound for production of rubber goods is designed with a combined use of accelerators, it is necessary to take into consideration, keeping in view the characteristics of each accelerator, such points as increase of efficiency, reduction of production cost, safety of processing (prevention of scorching), and better quality of finished goods. It has already been made known that the combined use of N-cyclohexyl-benzothiazol-2-sulphenamide (abbrev. below: CM) and diphenylguanidine (D) or tetramethyl-thiuram-disulphide (TT) shows excellent effect of combination. The author describes in this paper the studies made, in keeping in view the above given points, on the results when with CM 2 or 3 kinds out of dibenzo-thiazol-disulphide (DM) as thiazol type accelerator, and hexamethylene-tetramine (H) as aldehyde-amine type accelerator are used.

These studies have shown that, when the ratio of combination is CM : H = 0.5 : 0.1 (Sample B) CM : H = 0.4 : 0.2 (Sample C), the result from the point of view of scorching is not only as good as when CM alone is used (Sample A) but tensile strength as well as modulus is greater.

When DM is used for a part of CM, the vulcanization velocity is great when the ratio is about CM : DM = 0.3 : 0.4 (Sample D) or CM : DM = 0.2 : 0.5 (Sample E), and the tensile strength at the optimum cure is large in sample D, but the plateau effect is inferior to sample A (CM : DM = 0.6 : 0.1). There is a tendency that the move CM is used, the tensile strength as well as modulus becomes larger.

The author has been that the combined use of CM+DM+H activitates CM+DM, gives non-staining vulcanizate and shows good plateau effect.

編集後記
梅雨明けも間近にせまりました。本誌が御手許に届く頃はよいよ梅雨前の風のある雨季を迎えていることでしょう。今年の梅雨は例年になく東京では雨が少なく晴れが続き、南や北では水害が発生するという異常型でした。全国の会員諸氏にはご理解とご理解のご愛顧を賜りますと、心から感謝申し上げます。なお、著者が、年間を通じてこの雑誌に掲載される本誌を手に取ること、読むことが多く、いつも同僚諸氏および事務局にお伝えしていただけますと幸いです。