資料

ゴム押出機の新しい技術
—シャーヘッドの効果—

米倉 志朗*

1. はじめに

ゴム押出機の新しい技術として実用化され始めているシャーヘッドについて、原理、構造、効果などについて述べる。

2. シャーヘッドの目的

ゴムの最適加硫時間は、表1のように、加硫温度（T2）を上昇させると著しく短くなる。

そこで押出成形をして連続加硫をする場合、現在では常識になった常圧高温高速加硫では、加硫時間を短くするために競って加硫温度を高める傾向にある。

シャーヘッドは、通常の押出成形機のヘッドの部分に設置し図1に示すように、ゴムコンパウンドを機械的にせん断を与え、ゴムコンパウンドを加硫させて押出成形する装置で加硫のプレヒータとして作用する。

現在ゴム製品の常圧連続加硫として採用されている方法は次のようなである、(1) HAV法(熱空気法)、(2) LCM法(塩浴加硫法)、(3) HFB(PCM)法(流動床法)、(4) UHF法(超高周波法)などがあるが、UHF法を除き、いずれも成形品外部からの加熱による加硫方式である。ゴムは表2に示すように熱伝導性が低いので、外部からの加熱では成形品の表面

<table>
<thead>
<tr>
<th>表1 高温加硫による加硫時間短縮の一例</th>
<th>加硫時間 t₃ (min)</th>
</tr>
</thead>
<tbody>
<tr>
<td>加硫温度 T₂ (°C)</td>
<td></td>
</tr>
<tr>
<td>130</td>
<td>100</td>
</tr>
<tr>
<td>140</td>
<td>54.8</td>
</tr>
<tr>
<td>150</td>
<td>31</td>
</tr>
<tr>
<td>160</td>
<td>17.9</td>
</tr>
<tr>
<td>180</td>
<td>6.5</td>
</tr>
<tr>
<td>200</td>
<td>2.5</td>
</tr>
</tbody>
</table>

* 株式会社三栄製作所上田工場(〒386 長野県上田市中央東5-14)工場長。昭和33年、東京電機大学電気工学科卒業。同年、同三栄製作所上田工場設計課に入社、抵抗溶接機の自動制御、トランス、電線被覆装置、押出成形機の設計、企画室長を経て、59年5月より現職。
と中心部に発生する温度勾配によって不均一な加硫となる。

特に断面形状の大きい製品では、それが顕著で表面は過加硫になり、特性劣化する危険がある。またエネルギー的にみて過剰な熱量は不経済である。

これに比べシャーヘッドによる加硫はゴムをせん断し、内部より発熱させて成形するため断面形状、大きさに関係なく均一な昇温が可能である点に着目されてきた。

UHF法も確かに内部からの発熱であるが、これを利用的に高速加硫するには、極性のゴム配合剤を使用する必要があるし、配合剤の分散不良によっては局部発熱を起こしゴムが分解するおそれもある。

3. シャーヘッドの基本的原理

図1において発熱部Lでゴムコンパウンドが昇温すると仮定し、Lの部分を通じる時間をt、押出機からの押出容量をQとし、マンドレルの回転によって、ゴムに生ずるせん断応力を(τ)，せん断速度を(γ)、粘度を(η)とすれば、単位容積当たりのひずみエネルギー(ω)は、ω＝τ·γ[W/m³]又は[N/s/m²]、粘度(η)，せん断速度(γ)，応力(τ)の関には

\[τ = η \cdot γ \]

の関係があるので、

\[ω = η \cdot γ^2 \]

Lの部分のゴムコンパウンドの容積(V)を押出量で表わすれば

\[V = Q \cdot t \ [m^3] \]

よって機械的仕事(Z)は

\[Z = ω \cdot V = η \cdot γ^2 \cdot Q \cdot t \ [W] \]

\[H = Q \cdot t \cdot m \cdot C \cdot θ \]

m：比重 C：比熱

熱損失がないとすれば

\[H = K \cdot Z \]

\[θ = η \cdot γ^2 \]

近似的にせん断応力を、せん断速度の単純な累乗として表すと

\[τ = K \cdot (γ)^n \quad η \propto (γ)^{-1} \]

\[θ \propto η \cdot (γ)^2 \propto (γ)^{+1} \]

ここでせん断速度を(γ)＝π·D·N/h とすれば

\[θ \propto η \cdot \left(\frac{D}{h} \right)^2 \cdot N^2 \propto \left(\frac{D \cdot N}{h} \right)^{+1} \]

一般にゴムの粘度は温度が上昇すれば小さくなる。実測では、θ≈N の感じのデータが多い。

ある条件のもとでマンドレル回転数とゴムコンパウンドの昇温の関係を実測したデータを図2に示す。図2では、マンドレルの回転数に比例してゴムコンパウンドが昇温している。スクリュー回転7 rpm時の昇温曲線は直線でゴムコンパウンドの温度(T)は

\[T=2.17 \times 11^5+55(°C) \]

で表わされている。

4. 実用機の構造

以上の様々な原理に基づいて各社が、これを実用機に応用している。カタログ、文献などに示されている各社の構造を図3〜6に示す。

ゴムの発熱は、マンドレルとパレル間のギャップを小さくすることにより同一マンドレル回転数

<table>
<thead>
<tr>
<th>物 質</th>
<th>熱 伝 導 率 (cal/cm·sec·deg)</th>
</tr>
</thead>
<tbody>
<tr>
<td>天然ゴム（原料ゴム）</td>
<td>(0.32〜0.34)×10^{-3}</td>
</tr>
<tr>
<td>SBR</td>
<td>0.59×10^{-3}</td>
</tr>
<tr>
<td>CR</td>
<td>0.46×10^{-3}</td>
</tr>
<tr>
<td>NBR</td>
<td>0.59×10^{-3}</td>
</tr>
<tr>
<td>プチルゴム</td>
<td>0.22×10^{-3}</td>
</tr>
<tr>
<td>ポリイソブチレン</td>
<td>0.28×10^{-3}</td>
</tr>
<tr>
<td>シリコンゴム</td>
<td>0.35×10^{-3}</td>
</tr>
<tr>
<td>鋼</td>
<td>0.88〜0.94</td>
</tr>
<tr>
<td>鉄</td>
<td>0.11〜0.16</td>
</tr>
</tbody>
</table>

図2 シャーヘッド昇温特性例
図6 三薗製作所シャーヘッド

でも多くすることができるので、マンドレル回転数を増やしてゴム温度を制御する場合に、マンドレルの回転変動(ΔN)に対するゴム温度の変動(ΔT)が多くなり、制御しにくくなって実用面で不便になってくる。またギャップの大、小によりせん断速度が変わり、マンドレル及びバレルのそれぞれの壁面の条件で温度の均一性に差が出てきたり、部分的にスコーチが発生したりするので、実際面では、ギャップの大きさ、発熱部の長さの選定が重要な問題で、各社のノウハウがあるものと思われる。

図5の例は、直進形でマンドレルがスクリューア前端に直結され、その外周に回転シリンダーを設けて、このシリンダーを油圧モータでスクリューと反対方向に回転させる方式で押出機先端に加わる圧力がクロス式に比べ、低くなる特長がある。また従来機に取付けてもラインの流れを変更しなくてはむ。

図6の例では、マンドレルの一部に羽根（ねじ）がつけられているが、この効果は①ゴム材料を前へ搬送する効果——軸ペント押出機にシャーヘッドをクロスに連結した場合、押出機入口部の圧力がシャーヘッドの抵抗分だけ高くなり、場合によっては押出機のペントアップを招くこともあるので、ゴム材料を前へ搬送させ押出機出口の圧力を下げペントアップを防止するようにしている。

しかし、この搬送作用をあまり過大にすると、ゴム温をマンドレル回転数で制御する際、吐出量まで変化してしまい面白くない。その辺の関係を考慮して設計された装置の実測データを図7に示す。②作業終了時シャーヘッド内のゴムの清掃にマンドレルを回転するだけで内部のゴムが押出されて便利である。各社のシャーヘッドの長さはバレル径Dの2〜5Dと短く、短時間で昇温させる構造となっている。
図7 送りねじを有するシューヘッド・データ

5. シューヘッドの特長

シューヘッドの一般的な特長は
①シンプルな構造でコンパクト
②最適温度に調整容易
③機械的せん断内部発熱のため効率的で、電力消費が小さい
④せん断発熱であるためUHFのようなゴム配合での制約がない
⑤マンドレルの回転でゴムの温度制御ができる
⑥押出製品の断面形状に無関係に温度分布が均一
⑦高温押出であることがある形状の保持性が良い
⑧加硫後の製品の肌、外観が良い
⑨設備費が安価
⑩最初から良品が得られる等々が挙げられる。

6. シューヘッドの効果

上記の特長を裏付ける資料をEsso Chemicals社が1984年にテクニカルレポートとして最近自動車関係のパーツとして使用頻度の高いEPDM（Essoの独自ブランド・グレードもの）を使っての実験のデータを発表しているので、これらを紹介する。

マンドレル回転とゴム温度とのデータを図8に示す。マンドレル回転に比例してゴム温度があがっている。

シューヘッド出口の加硫度を示すグラフとしてゴム温度と溶剤シクロヘキサンの重量及びムーニー粘度の関係を図8に示す。

図10に示す装置及びプレス加硫との比較データを表3に示している。
表4 UHFとの比較

<table>
<thead>
<tr>
<th>製品重量（g/m）</th>
<th>シャーヘッド</th>
<th>UHF</th>
<th>プレス</th>
<th>シャーヘッド</th>
<th>UHF</th>
<th>プレス</th>
</tr>
</thead>
<tbody>
<tr>
<td>250</td>
<td>250</td>
<td>-</td>
<td>600</td>
<td>600</td>
<td>-</td>
<td>600</td>
</tr>
<tr>
<td>押出速度（m/min）</td>
<td>8</td>
<td>7</td>
<td>-</td>
<td>5.3</td>
<td>4.5</td>
<td>-</td>
</tr>
<tr>
<td>硬度 A</td>
<td>62</td>
<td>65</td>
<td>65</td>
<td>49</td>
<td>51</td>
<td>53</td>
</tr>
<tr>
<td>300モジュラス MPa</td>
<td>7.0</td>
<td>6.0</td>
<td>5.7</td>
<td>3.0</td>
<td>3.0</td>
<td>3.4</td>
</tr>
<tr>
<td>張力</td>
<td>9.5</td>
<td>8.5</td>
<td>8.2</td>
<td>7.5</td>
<td>6.2</td>
<td>6.1</td>
</tr>
<tr>
<td>伸び (%)</td>
<td>530</td>
<td>500</td>
<td>490</td>
<td>700</td>
<td>680</td>
<td>570</td>
</tr>
<tr>
<td>滞留時間(min)</td>
<td>1.1</td>
<td>1.3</td>
<td>-</td>
<td>1.7</td>
<td>2.0</td>
<td>-</td>
</tr>
</tbody>
</table>

*1 VISTALON560*3 50; VISTALON5600*3 50; SRF N-774 120 FLEXON876*4 70; ZnO 10; STEARIC ACID 1; RHENOSORB C*3 8; S 1; TMTDS 0.75; DPTTS 1.5; DTDM 1; DOTG 2
*2 VISTALON6630*3 130; SILLIKOLLOID 220; FLEXON845*4 70; ZnO 10; PEG4000 10; STEARIC ACID 1; TiO₂ 10; RHENOSORB C*3 10; SILANE A 189 1 S 1.5; MBT 1; ZDMDC 4; TDEDC 1
*3 VISTALON (EPDM EXXON COMPANY U.S.A)
グレード名 5600 6500 6630
ML₁₁₇°C 70 50 35
ヨウ素値 約10 約10 約25
第3成分 ENB ENB ENB
油展量 - - 30部
*4 FLEXON (プロセスオイル EXXON COMPANY U.S.A)
*5 RHENOSORB C (消泡剤 RHEIN CHEMIE社 U.S.A)

またシャーヘッドと UHF との比較を図11に示す装置で行い、そのデータを表4に示している。
常圧連続加硫装置として多く使われているホットエ carr HAV), LCM, UHF とシャーヘッド方式の設備費の比較をドイツマラク (DM) で行ったデータを表5に示す。
これをみてもエラー方式を100とした場合、93％と最も安価である。UHF は135％と最も高価になっている。消費電力の比較を表6に示している。消費電力についても最も少ないデータになっている。
各連続加硫装置の総合比較を表7に示している。装置全長、価格、消費電力、メンテナンス、操作性ともに優れていることを示している。
シャーヘッドを製作しているメーカーのデータでなく、Esso Chemicals 社の技術データを使用してシャーヘッドの優秀性を明らかにしたが、三葉製作所製のシャーヘッドを使用して、住友化学工業㈱が EPDM の高硬度配合、低硬度配合のゴム

表5 各装置の設備比較（単位：1000ドイツマラク）

<table>
<thead>
<tr>
<th>加硫方法</th>
<th>装置長 (m)</th>
<th>HAV</th>
<th>LCM</th>
<th>シャーヘッド</th>
<th>UHF</th>
</tr>
</thead>
<tbody>
<tr>
<td>挿出機900(L/D=16)</td>
<td>3.0</td>
<td>175</td>
<td>175</td>
<td>190</td>
<td>175</td>
</tr>
<tr>
<td>シャーヘッド</td>
<td>1.5</td>
<td>-</td>
<td>-</td>
<td>110</td>
<td>-</td>
</tr>
<tr>
<td>UHF(4×3kW)</td>
<td>7.5</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>320</td>
</tr>
<tr>
<td>LCM</td>
<td>12.5</td>
<td>-</td>
<td>250</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>HAV(3×1m)</td>
<td>9.0</td>
<td>-</td>
<td>-</td>
<td>85</td>
<td>85</td>
</tr>
<tr>
<td>HAV(3×12m)</td>
<td>36.0</td>
<td>240</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>冷却槽</td>
<td>6.0</td>
<td>50</td>
<td>50</td>
<td>50</td>
<td>50</td>
</tr>
<tr>
<td>総額</td>
<td>465</td>
<td>475</td>
<td>435</td>
<td>630</td>
<td></td>
</tr>
<tr>
<td>指標</td>
<td>100</td>
<td>102</td>
<td>93</td>
<td>135</td>
<td></td>
</tr>
</tbody>
</table>
表6 消費電力の比較

<table>
<thead>
<tr>
<th></th>
<th>HAV</th>
<th>LCM</th>
<th>シャー・ヘッド</th>
<th>UHF</th>
</tr>
</thead>
<tbody>
<tr>
<td>押出機</td>
<td>80</td>
<td>80</td>
<td>100</td>
<td>80</td>
</tr>
<tr>
<td>HAV(1×9 m)</td>
<td>—</td>
<td>—</td>
<td>24</td>
<td>24</td>
</tr>
<tr>
<td>HAV(3×12 m)</td>
<td>115</td>
<td>—</td>
<td>—</td>
<td>—</td>
</tr>
<tr>
<td>UHF(4×3 kW)</td>
<td>—</td>
<td>—</td>
<td>24</td>
<td>—</td>
</tr>
<tr>
<td>LCM</td>
<td>—</td>
<td>90</td>
<td>—</td>
<td>—</td>
</tr>
<tr>
<td>合計</td>
<td>195 kW</td>
<td>170 kW</td>
<td>124 kW</td>
<td>128 kW</td>
</tr>
<tr>
<td>指標</td>
<td>100</td>
<td>87</td>
<td>64</td>
<td>66</td>
</tr>
</tbody>
</table>

表7 各連続加硫装置の選択比較

<table>
<thead>
<tr>
<th>装置全長(m)</th>
<th>HAV</th>
<th>LCM</th>
<th>シャー・ヘッド</th>
<th>UHF</th>
</tr>
</thead>
<tbody>
<tr>
<td>21</td>
<td>21.5</td>
<td>19.5</td>
<td>25</td>
<td></td>
</tr>
<tr>
<td>装置数格指標</td>
<td>100</td>
<td>102</td>
<td>93</td>
<td>135</td>
</tr>
<tr>
<td>電気消費指標</td>
<td>100</td>
<td>87</td>
<td>64</td>
<td>66</td>
</tr>
<tr>
<td>メンテナンス頻度</td>
<td>低</td>
<td>低</td>
<td>低</td>
<td>やや高</td>
</tr>
<tr>
<td>操作性</td>
<td>単純</td>
<td></td>
<td>単純</td>
<td>極単純</td>
</tr>
</tbody>
</table>

操作性：
- ○昇温時間大
- 〇熱媒体に混入する可能性

表8 ゴム配合

<table>
<thead>
<tr>
<th>コンパウンド</th>
<th>HAV</th>
<th>LCM</th>
<th>シャー・ヘッド</th>
<th>UHF</th>
</tr>
</thead>
<tbody>
<tr>
<td>エスプレン553*1</td>
<td>50</td>
<td>50</td>
<td>50</td>
<td></td>
</tr>
<tr>
<td>ク 400*2</td>
<td>100</td>
<td>—</td>
<td>—</td>
<td>—</td>
</tr>
<tr>
<td>ク 501A*3</td>
<td>—</td>
<td>—</td>
<td>—</td>
<td>—</td>
</tr>
<tr>
<td>MAFカーボン</td>
<td>100</td>
<td>—</td>
<td>—</td>
<td>—</td>
</tr>
<tr>
<td>FEFカーボン</td>
<td>120</td>
<td>—</td>
<td>—</td>
<td>—</td>
</tr>
<tr>
<td>重カルNS200（日東）</td>
<td>70</td>
<td>—</td>
<td>—</td>
<td>—</td>
</tr>
<tr>
<td>オイルPW-90（出光）</td>
<td>70</td>
<td>65</td>
<td>65</td>
<td>—</td>
</tr>
<tr>
<td>ZnO #3号</td>
<td>5</td>
<td>5</td>
<td>—</td>
<td>—</td>
</tr>
<tr>
<td>St.acid</td>
<td>1</td>
<td>1</td>
<td>—</td>
<td>—</td>
</tr>
<tr>
<td>R-300（共同薬品）</td>
<td>1</td>
<td>1</td>
<td>—</td>
<td>—</td>
</tr>
<tr>
<td>ベスタ BS（井上石灰）</td>
<td>10</td>
<td>3</td>
<td>—</td>
<td>—</td>
</tr>
<tr>
<td>SoX CZ</td>
<td>1.5</td>
<td>—</td>
<td>—</td>
<td>—</td>
</tr>
<tr>
<td>ク BZ</td>
<td>2.0</td>
<td>1.2</td>
<td>—</td>
<td>—</td>
</tr>
<tr>
<td>ク TT</td>
<td>0.5</td>
<td>0.5</td>
<td>—</td>
<td>—</td>
</tr>
<tr>
<td>ク TRA</td>
<td>0.5</td>
<td>0.5</td>
<td>—</td>
<td>—</td>
</tr>
<tr>
<td>ク TE</td>
<td>0.5</td>
<td>0.8</td>
<td>—</td>
<td>—</td>
</tr>
<tr>
<td>ク M</td>
<td>1.7</td>
<td>—</td>
<td>—</td>
<td>—</td>
</tr>
<tr>
<td>硫黄</td>
<td>1.5</td>
<td>0.6</td>
<td>—</td>
<td>—</td>
</tr>
<tr>
<td>合計</td>
<td>413.7</td>
<td>300.1</td>
<td>—</td>
<td>—</td>
</tr>
</tbody>
</table>

*1 ML1+4 100℃: 140単位
*2 ML1+4 100℃: 45単位
*3 ML1+4 100℃: 45単位

でシャー・ヘッドとホットエーター（HAV），プレスとの比較テストを行った結果を併せて紹介したい。

テストに使用したゴム配合を表8に示す。またコンパウンドの物性を表9に示す。テストに使用した装置の選択を図12に示す。テストに使用した押出機は90 mmベント押出機でL/D=16。スクリュー回転は15 r/mシャー・ヘッドのマンドレルとバレルの温度設定はそれぞれ80℃で固定した場合のデータである。

低硬度、高硬度のコンパウンドの昇温データを図13に示す。高硬度のコンパウンドのほうが昇温が大きい。また参考までにシャー・ヘッド入口と出入口直前の圧力の実測データを図14に示す。

表9 コンパウンドの物性

<table>
<thead>
<tr>
<th>項目</th>
<th>コンパウンド</th>
<th>低硬度</th>
<th>高硬度</th>
</tr>
</thead>
<tbody>
<tr>
<td>ML1+4 100℃</td>
<td>Vm</td>
<td>39</td>
<td>70</td>
</tr>
<tr>
<td>Vm</td>
<td>45</td>
<td>29</td>
<td>54</td>
</tr>
<tr>
<td>γ</td>
<td>5</td>
<td>12.4</td>
<td>10.2</td>
</tr>
<tr>
<td>γt</td>
<td>30</td>
<td>3.5</td>
<td>4.9</td>
</tr>
</tbody>
</table>

図12 テスト機概要図
加硫ゴムの物性を表10に示す。この表からも明らかのように加硫時間がホットエヤー(HAV)に比べ、50〜74%と短縮されている。

また、EPDMのデータのみが示されており、三葉製作所のシャーヘッドによる他の材料の昇温特性データを図15に示す。

図15中①はCR、②はSBR、③はハイパロン、④はNBRの昇温特性の例である。

図14 マンドレル回転数と圧力

図16 70 mm L型シャーヘッド（三葉製作所製）

表10 加硫ゴムの物性

<table>
<thead>
<tr>
<th></th>
<th>低硬度</th>
<th>高硬度</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>シャーヘッドとホットエヤー</td>
<td>プレス(160℃)</td>
</tr>
<tr>
<td>マンドレル回転数 (rpm)</td>
<td>20</td>
<td>20</td>
</tr>
<tr>
<td>ゴム出口温度 (℃)</td>
<td>105</td>
<td>103</td>
</tr>
<tr>
<td>加硫槽滞留時間 (min)</td>
<td>2.7</td>
<td>3.7</td>
</tr>
<tr>
<td>M200 (kgf/cm²)</td>
<td>19</td>
<td>50</td>
</tr>
<tr>
<td>M300 (kgf/cm²)</td>
<td>34</td>
<td>77</td>
</tr>
<tr>
<td>T_b (°C)</td>
<td>88</td>
<td>112</td>
</tr>
<tr>
<td>E_b (%</td>
<td>690</td>
<td>450</td>
</tr>
<tr>
<td>H_s</td>
<td>JIS A</td>
<td>43</td>
</tr>
</tbody>
</table>

注1: ホットエヤー槽200℃
注2: 引張試験の採取方法
シャーヘッド: チューブを3号ダンベル打抜き
ホットエヤー: 3mm厚リボンを3号ダンベル打抜き
プレス: 2mmシートを3号ダンベル打抜き

(39)
実際の生産設備として使用されている例を図16〜18に示す。

シャーヘッドは今までその特長を生かした多くの用途が開発されていくものと思われる。市場に出た当初は単純形状で大きい断面形状の押出成形に用いられ、次いでフレーム、異形品、スポンジ、複合異形品と徐々に用途が広がってきている。

また特殊な例として図19に示す耐圧・耐油ホースの製造装置がある。これは内層ゴムをシャーヘッド4a, 4bで押出成形して、補強用ブリッジをはさんで内、外層の密着と加硫の進行を同時にねらったものである。

またゴムとプラスチックをブレンドした材料、又はゴムとプラスチックの中間的なエラストマー、プラスチックの架橋など種々の用途が開発され、シャーヘッドの構造もその要求に応えて変遷していくものと思われる。非常に単純な構造ではあるが、成形材料、加工メーカー、成形機メーカーの連携により広い用途が開発され、進歩していくことを期待している。

引用文献
1) 鈴木孝昌：日本ゴム協誌, 59, 198 (1986), 千葉裕
3) European Rubber Journal, April 1979, p.26
4) Paul Troester Maschinenfabrik社, シャーヘッドカタログ (D-3000 Hanover Germany)
5) Hermann Berstorff Maschinenbau Gmbh社, 技術資料 (D-3000 Hanover Germany)
7) 住友化学工業㈱千葉研究所, 技術資料
8) 成形技研, 公開特許公報A昭61-49834