摩耗と摩擦

松原 清*

1. まえがき

英国機械学会が1937年に摩耗と潤滑に関する国際会議を開催し、2冊の論文集を刊行した。昨年その50周年記念の国際会議がロンドンで開催され、この間、質量ともに関連の研究が国際的に大変な発展をし、更にトライポロジーという学術用語が新しく生まれ、国際的に市民権が得られたその名前で会議が持たれた。全論文数109篇のうち、ポリマー関係が半を含む11篇であった。現代的傾向とはいいえ、セラミック関係が14篇もあったのは注目された。この会議においてTabor教授による摩耗と摩耗に関する重要な基調講演の論文1)があるので、それを引用しながら、筆者の考え方を織り混ぜて論じてみたい。

2. 摩耗摩耗に及ぼす因子

摩耗摩耗について、共通していることは、表面が関わっていることである。固体そのものが、その内部の屈折・組織、物理化学的性質あるいは静的・動力学的性質などでまだ解明されていないことが多くと判断される。このような状況下でその表面の性質は、不明の上に立った不確実さの内容から成立つと見なせるから、トライポロジー全般を大変に複雑にしているのである。

2.1 摩耗の影響

表面を対象に摩耗摩耗に関連することを挙げると、まず第一は摩耗である。摩耗の理論には、摩耗が原因あるようにその役割は、非常に大きい。しかし、実際の摩耗摩耗を測定するにあたって、その摩耗が直接影響したり、往々にして全く影響しなかったり大変複雑である。摩耗が摩耗摩耗の分野に及ぼす影響の複雑さと混雑さの内容を理解することが重要であろう。

* 東海大学工学部生産機械工学科(〒259-12 滋賀県甲府市北畠1117)教授、工博、昭和27年、早稲田大学理工学部機械工学科卒業。工業技術院機械技術研究所基礎部トライポロジー課長を経て昭和50年4月より現職、専門は機械工学。日本機械学会新しい振動部材調査研究会主査。

＜趣味＞ゴルフ、俳句。
た。

2.3 粘弾性と弾性ヒステリシス損失
すべり摩擦において、特別ゴム・プラスチックの場合は粘弾性の明白な挙動すなわち温度、ひずみ速度依存性が現れ、WLF変換が可能となる。また摩耗においても同様の挙動があることが報告されている。

こころがり摩擦の主原因とされている弾性ヒステリシス損失はすべり摩擦の場合には一部を除いてほとんど現われない。

2.4 すべり条件の因子
荷重、すべり速度、温度及びすべり面に介する液体や固体粒子などがすべり条件における因子といえる。これらのなかで、固体間異物が存在する場合を考えるととき、砂や摩耗粉末などの自由運動粒子、又は布やすりを紙やすりのような固定粒子が、すべり面にあるときのすべり摩擦についての解析は、比較的少ない。これは、すべり摩擦は清浄面で介在物がないことを前提にしていることによるのであろう。ところが、摩耗に関しては、このような系においては摩耗が比較的激しく、またこのような実際上の現象が多数あって、これがアブレーションと呼ばれるものである。

3. 摩擦
すべり摩擦の発生の機構の主原因として、表面粗さと表面微着があるので、その二つに分けて以下述べよう。

3.1 表面粗さ
3.1.1 クーロンの法則 ところで前に述べたトライボロジーの国際会議においてTabor教授の基調講演中でアントン法則の出た後のクーロンの法則が次のように論じられている。
クーロンはすべりの摩擦抵抗は主に二つの主要原因から発生するとしている。すなわち(a)表面粗さの著み合いによってすべりは一つの突起が他の突起の傾斜を登り上がること、また突起の曲げ変形あるいは突起の破壊から成立っている。(b)接触の部分における分子微着に関連して、クーロンは接触面積を大きくすれば、大きい接触面積が生じ、その結果として大きい摩擦が発生するはずであるが、彼の実験では摩擦は物体の寸法にはほとんど無関係であった事実から、摩擦の大部分は微着によるという考え方を捨てた。そして、摩擦力Fは垂直荷重Pに完全に比例しないことを観察し、次の二つの項からなることを述べた。

\[F = \mu P + b \]

ここで第一の主要項は粗さの相互作用から発生し、第二の微小項は微着から発生する。ここで、主要項、微小項というのはμ>bのように数値の差の大きさを意味する。

3.1.2 摩擦の模型的表示と粗さによる摩擦上に述べたことから、摩擦係数はtan θの尺度で表され、ここでθは突起の平均傾斜角である。これは見掛けの寸法や荷重がどのようであっても与えられた表面の組合せによって一定である。この考え方が一般的知識として受入れられ、その重ねに滑らかな面は摩擦がないという間違った考えが導かれた。

以上の論識では、μに関しての定数的なものであり、定常的なすなわち数値を明らかにできない。そこで、粗さと摩擦の関係を実験で得られたものを図1に示す。すなわち、粗さが大きくなくなるにしたがってμが小さくなりつつ一定値に近づき、その後は再び大きくなる。

3.2 接着
3.2.1 分子理論 摩擦の発生機構に関する分子理論の説明は、1929年にTomlinsonによって行われた。その後Derjakinによるクーロンの式(1)と似た次式を導いた。

\[F = \mu (P + Z) \]

ここで、Zは分子引力であり、これは垂直荷重を増加させる働きがある。

3.2.2 接触面積と摩耗 二つの固体を荷重Wで接触させた場合の接触面積Aは、次の関係式で示される。

\[A = kW^a \]
ここで K は定数、n は接触面が荷重を受けた時に生じる変形の性質によって決まる定数で、$n=1$ は塑性変形、$n=2/3$ は弾性変形となる。

ところで、凝着部の生成とそのせん断は図 2 に示すようになるから、その面積を A、せん断応力 s とすれば、摩擦力 F は、次のようになる。

$$F=As$$

(4)

ここで、式(3)の A を代入すると,

$$F=KnW^n$$

(5)

のようになる。ここで、$n=1$ を入れると摩擦の第 2 法則が導かれる。また $n=2/3$ を入れると弾性変形の式が導かれる。

3.2.3 せん断応力 s と降伏応力 p の比 s/p 弾性変形の典型的例である硬さすなわち降伏圧力 p は、次式で示される。

$$W=Ap$$

(6)

したがって、摩擦係数 μ は

$$\mu=F/W=s/p$$

(7)

そこで、$\mu=ks/p$ ときこの式を吟味したのが図 3 である。ここでは、プラスチックの温度を変えて、s 及び p を、同時にその温度で μ を測定した

ものである。$k=1$ は 1 点荷重で示され、PTFE は $k<1$ である。また バースペックス（アクリル樹脂）は $k>1$ であり、それぞれの理由の説明が必要である。

3.2.4 表面粗さと塑性指数 接触面積と荷重の関係、それに伴う摩擦への影響を生じた。表面には粗さが存在するので、粗さの微視的尺度から見た接触面積と粗さの関係を検討しなければならない。それには荷重によって生ずる突起の変形に関する概念を理解する必要がある。

表面突起の変形に関する、塑性指数 ψ について、Greenwood, Williamson は、球状突起の高さが正規分布しているとして、すべりの接触下的変形について、次のように示した。

$$\psi=(E/H)(\sigma/R)^{1/2}$$

(8)

ここで、E: 平面材料の弾性係数、H: 厚さの硬さ、σ: 突起の高さの平均偏差及び R: 厚さの平均曲率半径である。

なお、(E/H) は材料定数であるが、$(\sigma/R)^{1/2}$ は等方突起の代表的面積に相当するものである。ここで、E/H は、金属では約 200-300 である。彼らの研究によれば $\psi > 1$ のときは塑性変形、0.6 より小さいときは弾性変形であるが、同一の粗さと床面形状の尺度 $(\sigma/R)^{1/2}$ で比較すると、金属では $\psi > 1$ であり、塑性変形しやすいことがわかる。したがって粗さの尺度と幾何形状、すなわち $(\sigma/R)^{1/2}$ が一定の場合には粗さの変形性を一義的に決めるのは (E/H) である。

ところで、微視的塑性変形の尺度は、硬度 H であるが、突起の塑性変形における局部的圧力 p は $p=0.6H$ であるから実際接触面積は $A=(P/0.6H)$ で決定される。

3.2.5 クーロン則と凝着説の結論 式(2)に粗さと凝着の両者が同時に作用する関係を示したが、Ernst, Merchant は、物質固有の摩擦角 τ と平均粗さの尺度としての接触角 θ との関係から、凝着と粗さが同時に摩擦係数に及ぼす影響を明らかにした。

いま τ より定まる摩擦係数を μ_1 とすれば、

$$\mu_1=\tan \tau$$

(9)

したがって、両者の和が傾斜角の和 $(\theta + \tau)$ に相当するものとして、その摩擦係数は次のようにとなる。

$$\mu=\tan (\theta + \tau) = \frac{\tan \tau + \tan \theta}{1 - \tan \tau \cdot \tan \theta}$$

(29)
摩耗と摩擦

総論

\[s/H + \tan \theta \]

\[1 - s/H \cdot \tan \theta \]

\[\mu = s/H + \tan \theta \]

ここで、\(s/H \) は繊維、\(\tan \theta \) は外力に基づくものである。

5. 摩耗

摩耗発生の因子は多数あって、摩耗に及ぼす影響は新潟に複雑であるが、表面間に作用する繊維力と、表面間に関係する流動粒子が摩耗に及ぼす影響の二つの因子に分けて述べることにする。

5.1 凝着摩耗

5.1.1 摩耗法則と代表的実験結果

摩耗を実際接触面積 \(A \) とすべり距離 \(S \) の両者に比例するものとし、その \(A \) は表面の塑性変形によって定まるとすれば、式(5)により、摩耗量 \(W \) は次のようになる。

\[W = KSA = KSP/p_m \]

ここで \(P \)：荷重、\(p_m \)：組合せ材料のうち柔らかいほうの降伏圧力、又は硬さ、\(K \)：摩耗発生の確率

で、摩耗係数である。

この式は次のことを意味する。すなわち、

(1) 単体摩耗量 \((W/S)\) は見掛けの接触面積に無関係である。

(2) 単位摩耗量 \((W/S)\) は荷重に比例する。

この法則はアモントの摩擦法則と同一の機構に基づくもので、両者はよく類似している。

これらの考え方に従って、Archard, Hirstの式 \(W = KSP/p_m \) は実験を確かめ、摩擦熱によって表面が変化しない限り成立つことを明らかにした。

そしてリング形の試験機で、\(P=400 \, \text{gf} \), \(V=180 \, \text{cm/s} \) で、\(W/S \) すなわち \(\varepsilon \) と \(K \) を求めた結果を表1に示す。

表では摩耗の悪い順番に示されている。軟鋼—

<table>
<thead>
<tr>
<th>組合せ材料</th>
<th>摩耗量 (\varepsilon)</th>
<th>摩耗係数 (K)</th>
<th>硬さ (\text{gf/cm}^2)</th>
</tr>
</thead>
<tbody>
<tr>
<td>軟鋼—軟鋼</td>
<td>(1570 \times 10^{-3})</td>
<td>(7 \times 10^{-3})</td>
<td>(18.6 \times 10^6)</td>
</tr>
<tr>
<td>60/40黄鋼</td>
<td>(240)</td>
<td>(6 \times 10^{-4})</td>
<td>(9.5)</td>
</tr>
<tr>
<td>テフロン</td>
<td>(200)</td>
<td>(2.5 \times 10^{-5})</td>
<td>(0.5)</td>
</tr>
<tr>
<td>70/30黄鋼</td>
<td>(100)</td>
<td>(1.7 \times 10^{-4})</td>
<td>(6.8)</td>
</tr>
<tr>
<td>メタクリル酸樹脂</td>
<td>(14.5)</td>
<td>(7 \times 10^{-6})</td>
<td>(2.0)</td>
</tr>
<tr>
<td>フェノール樹脂成形品</td>
<td>(12.0)</td>
<td>(7.5 \times 10^{-6})</td>
<td>(2.5)</td>
</tr>
<tr>
<td>Silver steel</td>
<td>(7.5)</td>
<td>(6 \times 10^{-5})</td>
<td>(32)</td>
</tr>
<tr>
<td>ベリリウム鋼</td>
<td>(7.1)</td>
<td>(3.7 \times 10^{-3})</td>
<td>(21)</td>
</tr>
<tr>
<td>堆入工具鋼</td>
<td>(6.0)</td>
<td>(1.3 \times 10^{-4})</td>
<td>85</td>
</tr>
<tr>
<td>Stellite grade 1</td>
<td>(3.2)</td>
<td>(5.5 \times 10^{-3})</td>
<td>69</td>
</tr>
<tr>
<td>フェライトステンレス鋼</td>
<td>(2.7)</td>
<td>(1.7 \times 10^{-3})</td>
<td>25</td>
</tr>
<tr>
<td>フェノール樹脂積層品</td>
<td>(1.8)</td>
<td>(1.5 \times 10^{-6})</td>
<td>3.3</td>
</tr>
<tr>
<td>フェノール樹脂成形品</td>
<td>(1.0)</td>
<td>(7.5 \times 10^{-7})</td>
<td>3.0</td>
</tr>
<tr>
<td>タングステンカービド—軟鋼</td>
<td>(0.9)</td>
<td>(4 \times 10^{-6})</td>
<td>18.6</td>
</tr>
<tr>
<td>フェノール樹脂積層品</td>
<td>(0.4)</td>
<td>(3 \times 10^{-7})</td>
<td>2.9</td>
</tr>
<tr>
<td>ポリエチレン</td>
<td>(0.3)</td>
<td>(1.3 \times 10^{-7})</td>
<td>0.17</td>
</tr>
<tr>
<td>タングステンカービド樹脂</td>
<td>(0.03)</td>
<td>(1 \times 10^{-6})</td>
<td>130</td>
</tr>
</tbody>
</table>

\((P=400 \, \text{gf}, \, V=180 \, \text{cm/s})\)

(P.30)
表2 各種材料の摩耗指数

<table>
<thead>
<tr>
<th>材料</th>
<th>摩耗指数 $a/a_{0.37}$</th>
</tr>
</thead>
<tbody>
<tr>
<td>鋼T80H (1/2 h 850℃/W)</td>
<td>0.109</td>
</tr>
<tr>
<td>ポリウレタン，Vulkollan[61-Vu(18)−II]</td>
<td>0.143</td>
</tr>
<tr>
<td>塩化ビニル樹脂 [16-PVC(5)−II]</td>
<td>0.143</td>
</tr>
<tr>
<td>ポリウレタン，Vulkollan[62-Vu(34)−II]</td>
<td>0.403</td>
</tr>
<tr>
<td>塩化ビニル樹脂 [15-PVC(10)−II]</td>
<td>0.42</td>
</tr>
<tr>
<td>ゴム [65-Cu(17)−II]</td>
<td>0.57</td>
</tr>
<tr>
<td>塩化ビニル樹脂 [14-PVC(14)−II]</td>
<td>0.96</td>
</tr>
<tr>
<td>鋼St 37[75-St 37(126)−I]</td>
<td>1.0</td>
</tr>
<tr>
<td>鋼St 34[72-St 34(124)−I]</td>
<td>1.07</td>
</tr>
<tr>
<td>ポリアミド−6，Grilon R 50 hell[33-Gr 50(62)−I]</td>
<td>(1.33)</td>
</tr>
<tr>
<td>ポリアミド−6，Grilon R 70 hell[38-Gr 70(64)−I]</td>
<td>(1.33)</td>
</tr>
<tr>
<td>鋼 [84-Cu(99)−I]</td>
<td>1.36</td>
</tr>
<tr>
<td>高圧法ポリエチレン [27-HP(42)−II]</td>
<td>(1.4)</td>
</tr>
<tr>
<td>高圧法ポリエチレン [24-NP(58)−II]</td>
<td>(1.4)</td>
</tr>
<tr>
<td>ポリアミド−11，Rilsan-Besno[53-RBv(71)−I]</td>
<td>1.81</td>
</tr>
<tr>
<td>低圧ポリエチレン [22-NP(58)−I]</td>
<td>(2.0)</td>
</tr>
<tr>
<td>低圧ポリエチレン [23-NP(60)−II]</td>
<td>(2.0)</td>
</tr>
<tr>
<td>ポリアミド−6，Ultramid-BM 2900[43-UI(70)−I]</td>
<td>2.21</td>
</tr>
<tr>
<td>アルミニウム [83-Al(39)−II]</td>
<td>2.68</td>
</tr>
<tr>
<td>黃銅 [86-Ms(150)−I]</td>
<td>2.76</td>
</tr>
<tr>
<td>アルミニウム [82-Al(29)−II]</td>
<td>8.23</td>
</tr>
<tr>
<td>ポリアミド−11，Rilsan-Besno[48-RBn(61)−I]</td>
<td>3.31</td>
</tr>
<tr>
<td>塩化ビニル樹脂 [12-PVC(52)−II]</td>
<td>(4.2)</td>
</tr>
<tr>
<td>塩化ビニル樹脂 [5-PVC(78)−II]</td>
<td>6.3</td>
</tr>
<tr>
<td>硬質紙，Resitex[89-R(89)−II]</td>
<td>8.2</td>
</tr>
<tr>
<td>塩化ビニル樹脂 [11-PVC(76)−II]</td>
<td>(8.5)</td>
</tr>
<tr>
<td>ガラス [88-G(67)−II]</td>
<td>(9.7)</td>
</tr>
<tr>
<td>鉄 [87-Pb(4)−II]</td>
<td>(10.5)</td>
</tr>
<tr>
<td>アクリルガラス，Plexiglas[58-PI(85)−II]</td>
<td>(10.75)</td>
</tr>
<tr>
<td>硬質紙，Pertinax[90-P(92)−II]</td>
<td>(18.5)</td>
</tr>
<tr>
<td>エポキシ樹脂 [92-EG(86)−II]ガラス繊維入り</td>
<td>(19.5)</td>
</tr>
<tr>
<td>エポキシ樹脂 [91-EQ(84)−II]石英粉入り</td>
<td>(31.0)</td>
</tr>
</tbody>
</table>

軟鋼から黄銅，テフロンと続き，よいほうではポリエチレン，タングステンカーバイド同志の順である。そこで，e と K を比較してみると，ポリエチレンとタングステンカーバイドでは順位が逆転していることがわかる。すなわち e でタングステンカーバイドが最も耐摩耗性が良かったのが，その K で見ると下から 4 番目に当っている。

いま式(1)を書き直すと，$K = (W/S)$ (p_m/P) $= e/A$，ここで $A = P/P_m$ である。したがって K が小さいためには e が小さいことと A が大きいこと，具体的には e/A が小さいという条件が必要である。すなわち，K が単位面積当たりの摩耗率を意味することになる。タングステンカーバイド同志の組合せでは e が小さいが A も小さいため，e/A の値が比較的大きい値になったものである。これに対しポリエチレンは全く逆の条件で，e/A が小さくなったのである。

5.1.2 摩耗地図と三元摩耗 摩耗現象は荷重や速度などの条件によって，様々な挙動が現われるもので，観着摩耗はそれらのうち，理想的な場合の1形態であり，実際には大変複雑な挙動を示すのである。先に述べた Tabor 教授はその論文1) のなかで，Lim と Ashby 摩耗地図(Wear map)の報告を高く評価している。これにより，縦軸
5.2 アブレーション これに関連する沢山ある研究の中で一つを紹介する。Brauerが直径0.4 mm又は0.9 mmの金属球を27 m/sの速度で試験片の表面に衝突させ、その摩耗量測定した。それらの結果を表2に示す。

表に示されている摩耗指数は鋼 St37 の摩耗を1として比較したもので各試料について示したもので、最も耐摩耗性のよい鋼 T80H は0.109である。最も悪いエポキシ樹脂（石英粉入）は31である。

この表で耐摩耗性のよいグループをみると、硬さの高い鋼 T80H、また硬さの低いゴムやプラスチックが耐摩耗性が優れていることで、Oberleの概念である H/E から見ると理解しやすい。すなわち、H/Eが高いということは単純にみて荷重によって圧し、すなわち摩耗が発生しないということ。一方高分子材料の H/E は小さいが弾性を持つので、衝突力をその変形性 (E が小さいこと、又は弾性率) によって緩和させ、次にその回復力によって粒子を弾き出し、結果として摩耗が生じない表面状態に基づく機構と考えられる。

ニュートン力学によれば、一つの鋼球の質量を m とすれば、この運動量 $M = M_{max}$ であり、衝突力 $f = \frac{M}{m}$ である。したがって、高分子材料では a が著しく小さくなると考えられ、表2における一見不思議な耐摩耗機構もより理解される。そして同時に H/E が大きく E が小さい材料、すなわち H/E のより大きい単体又は複合材料の現われることが期待される。

6. ゴム、プラスチックの摩擦摩耗

6.1 すべり摩耗 高分子材料の摩擦現象は複雑であるが、これを単純化させて、溶融形、せん断形、炭化形及び高弾性形に分類すると便利である。次に順を追って述べよう。

6.1.1 溶融形 鋼とナイロン及びナイロン同志を組み合わせて、接合部 P 及びすべり速度 V の条件で溶けさせるとそれらの積 PV がある値以上になると、表面が溶解する現象がある。このような溶融条件を実験的に検出すると次のようになる。

$$PV = C$$

ここで、ナイロンと鋼との組合せでは $C = 590, \alpha = 1.1$ ととなった。一方ナイロン同志では、$C = 90, \alpha = 1$ である。両者の間でこのような差ができたのは、発熱量が一定とすれば、熱伝導の違いによるのである。

これと同じような現象は高密度ポリエチレンにおいても見いただされ、鋼との組合せでは $C = 200$、同志の組合せでは $C = 20$ であった。このような例はアセテール樹脂においても生じる。

6.1.2 せん断形 接触圧力とすべり速度の積 PV を大きくしてもナイロンのような溶融が発生せず、その代わりに摩擦ができテフロンがある。その例を示すと図5のようになる。この場合テフロンを鋼に対してすべらせたときの結果であり、$C = 10$ としてその限度を表せる。

以上の実験は室温において実験が行われているが、PV = 100にして、試験片の温度を300°Cまで上げて摩擦を調べたところ、温度が高くなるにしたがって摩擦が少なくなっている。

6.1.3 炭化形 フェノール樹脂は乾燥状態、いわゆるドライで耐摩耗性があるので、ブレーキのシューやクラッチ板に使用されている。そしてその耐摩耗機構は摩擦面で熱により炭化一脱落を繰り返しているようである。
同様の機能を持ったものにポリイミド樹脂がある。荷重をパラメータにして摩擦に対する速度の影響を検討したが、摩耗のピークがおよそ250
cm/sの速度にある。これより左側の領域では明らかにややで削り取ったような機械的摩耗、右側では表面が炭化している様子がみられた。すなわち、摩擦熱が化学変化を与え、その結果として炭化層が発生するのである。炭化層の厚さ、最
高で1mmに達した。そして、この炭化現象よりクラックが発生するが、その条件はPV値によっ
るが、PV=1200-1500kgf/cm²のよう非常に高い値を持つ。

6.1.4 高弾性形 すべり面の接触状況を観察的にみれば、一方を理想的に滑らかに面とし、相
手が粗さを持つ面をすれば、このようなすべり過程では、一つの突起部と平面の遭遇であるといえ
よう。図6は断面円形の針をゴム表面上に滑らせたときの変形の部分の軌跡を示したもので、(a)の最大変形からそれが解放し、次の変形(b)が始まった
様子を示している。すなわち、接触のときの速度を0とし、接触点が離脱するときの速度をすべ
り速度Vとすれば、減速度であるdV/dtが小さければ摩耗が小さくなる。その逆の
場合は破壊力は大となる。

7. セラミック

7.1 セラミックの特徴 セラミックは金属との
間での覆着が非常に少なく、潤滑条件の悪いと
ころでも、摩耗が大きさったくない。また耐熱性に優れている。これらの優れた性質にも関わらず、硬脆性の典型的な材料であり加工性が悪
いため一般にはあまり利用されていなかった。と
ころが、最近になり、合成素材の開発ならびに焼
成と加工技術の進歩により、耐熱への利用と相ま
ってトライボロジーへの関心が高まってき
た10,9。}

7.2 セラミックの摩擦の挙動

7.2.1 アルミナの摩擦 Buckley10)によるとア
ルミナの単結晶と多結晶の平板に対して、各種の

金属ビンで摩擦させると単結晶では金属の種類に
はほとんど影響されない。しかし、多結晶では明
らかに金属の種類に関係している。これらの差は摩
擦によるせん断が、単結晶ではその内部に多結晶
では金属の内部に生じていることが推察されてい
る。

7.2.2 遷移金属電子のd軌道占有率とセラミッ
クの摩擦 ボーリングによって、遷移金属の電
子配列において電子の全体に対するd軌道占有率
とその金属の物理的性質の間に明確な関係がある
ことが示されていた。Miyoshiら11)によると、その
発展として摩耗に関して、非酸化系のセラミッ
クに対して遷移金属を組み合わせた場合のそれら
のd軌道占有率の摩耗依存性が図7のように示さ
れた。これから、その占有率の小さい金属すなわ
ち、化学活性の大きなほど、摩耗が大きいことが
わかる。

7.3 摩耗の挙動

7.3.1 滑れにおけるクラックの発生条件
摩耗の発生条件としてクラックの発生は重要であ
る。静的と動的条件下においてハルツクラックを発
生させる限界荷重の関係はRawn12)によって、下
記のように求められている。

\[P_c = 0.2 P_0^* / (1 + 15.5 \mu)^3 \] (5) \n
この式は、ガラス平面を半径0.3cmの鋼球を用
い、\(\mu > 0.02 \)の条件で滑らせた時での式で、弾性
係数などの物質定数、表面の微小隙間長さ \(g \)
=1x10^-4cmなどを代入して得られたものであ
る。ここで、 \(P_0^* = \mu = 0 \)すなわち静的におい
てクラックが発生する限界の荷重であり、 \(P_c \) は \(\mu > 0.02 \)
の条件での \(\mu \) の値で滑らせたときにクラッ
クが発生する荷重である。この式からわかるように、\(P_c \) は3乗に逆比例して与えられる。
文献
2) 松原 清：トライボロジー，産業図書，5刷（1986）
3) Tomlinson, G. A.: Phil. Mag., 7, 905 (1929)
8) 松本裕司：潤滑，31, 855 (1986)
9) 石垣博行：潤滑，30, 627 (1985)
13) Barnes, D. J. and Powell, B. D.: Wear, 32, 195 (1975)