日本草地学会第9回大会講演要旨
1965年4月

受賞講演
草薙に対する施肥法に関する研究... 127
飼料作物の種子生産対策ならびに農業技術の検定成果について........ 128

一般講演
草類の生理・生態（1〜25）.. 129
育種・病虫害（26〜30）.. 138
土壌の成育・管理（31〜51）... 139
牧草・栽培の栽培（52〜70）... 147
放牧利用（72〜89）.. 153
飼料作物の栽培・加工（90〜100）... 161
土壌・施肥（101〜113）.. 165
飼料成分・飼養（114〜125）... 169

受賞講演

I. 草地に対する施肥法に関する研究
小原道郎（農試試場草地部）
草地に対する合理的施肥方法を知るため、昭和29年から草地改良ならびに草地の造成ならびに維持のための種々の栽培試験を実施し、生産、養分吸收および土壌に与える影響について明らかにした。

1. 草地に対する施肥
(1) 長草型草地の場合：10年間毎年施肥をつづけた場合の効果はN>P>Kで、施肥量次の発育にしたがって次第に増加が大きくなったが、1年みみ施態をした場合の10年間の効果はP>K>Nであった。施肥量は、N施用でイネ科、その他草は増加したが、イネ科、キク科は大草となる。施肥量を増加したN・P併用の増施効果は大きかったが、P以外の残効はさわめて小さかった。野草改良地においては、毎年施肥の場合は、N・Pともに5kg/ha以上、1年みみ施肥にはP2kg/ha以上の施用が必要である。石灰施用で、イネ科が大草となり、堆肥施用効果は小さかった。火入れ施肥の場合でも減収するが、減収割合は、火入れ施肥時期が秋季（10月）より春季（3月）のほうが小さい。施肥方法は、肥料を土壌表面に散布して放任する方法がもっともまかなが、施肥後、地表のかきならし、地表下への施肥が効果的。条間60cmの条施効果は、Pで大きくNは小さい。春溝および施肥時期は春季〜秋季である。
(2) ススキ型草地の場合：施肥効果はN>P>Kで、N・P併用の効果が大きかった。石灰施用で20〜30%減収したが、刈り取りの影響が大きく、無効区に比べ効果区の穂量は、初冬目55%、2年目43%，3年目28%と減収したが、施肥によってこの減収が防止できた。しかし、3年間施肥をつづけた場合でも、施肥を中止すると、施肥効果はきわめて小さくなった。
(3) 離花型草地の場合：施肥の植物構成におよぼす影響が著しい。離花は好酸性植物のため、離花地としての維持には酸性土壌を主体とした施肥が必要である。
(4) 野草草地に不耕起のまま牧草を導入する場合の施肥：この場合は、牧草の養分吸収の特徴にしたがった施肥の合理化とともに、播種時に地表処理をして種子を土壌に接着させることが必要である。
(5) 野草地改良は、飼料耕作として家畜の好みに適し
た野草の栄養価および量を増進しなければならない。したがって、施肥に対する野草類の感応はきわめて複雑であるので、この草種の変遷に注目しなければならない。

2. 牧草地に対する施肥

（1）施肥効果：牧草および土壌の変化に合致した施肥が必要であり、イネ科牧草類はN、マメ科牧草類はP・K・Caなどの施用効果がそれぞれ大きく、N・P・Kともに併用効果が大きい。

（2）N効果：グラスにはきわめて顕著で、N増施にとってもそれが増収するが、元肥効果は1番草にまで、それ以降は小さい。グラスの栽培で、根が地表部に密に伸展し、土壌が堅くなり、通気通水性が不良となり、土壌は次第に化酸化性が失われ、土壌有機物の無機化および硝酸化成が進む。したがって、土壌は栄養的に肥沃化しながらも、牧草はN欠乏の症状を示すようになる。クローバーにはN効果が大きいが、適量は0.5kg/aである。Nの形態としては、グラスには硝酸窒素素がもっとも肥効が高いが、クローバーにはもっとも劣る。

（3）P効果：グラス、クローバーともにP増施にもとない増収になるが、P増施により、N取り後期にN欠乏が顕著になり、2年目の残薫も、N追肥量が小さないと元肥にPを多施した場合ほど減収しない。クローバーにはP増施効果は残薫年も多いが、P効果は、グラスにはN、クローバーにはKとの併用効果が大きい。

（4）K効果：グラス、クローバーともに大さいが、増施効果とは、とくにK欠乏の場合にN・P効果に比べると小さい。K効果はCa、Mgとの併用で高まる。

（5）石灰効果：グラス、クローバーともに大きいが、増施および追肥効果は比較的小さく、グラスよりクローバーのほうが効果が大きい。

（6）堆肥効果：グラス、クローバーともに大きいが、持続効果は小さい。追肥効果は、グラスには化学肥料の併用で小さくなる。

（7）施肥方法：牧草の年間収量を増大するためには、気候的、生育適期に十分な効果ができるように重点的に施肥をしなければならない。年間1回のみの追肥では秋期追肥＞春季追肥。肥料要素別にはPは秋季、N・Kは早春追肥が適している。追肥効果は、元肥量が少量のときほど高い。また、高濃、早期追肥の追肥効果は期待できない。追肥方法は、播種の場合は全面にむらのないように散布して放置し、条播の場合は、播種線の上に散布し、施肥後の地表処理あるいは培土作業などの効果を認められない。

（8）養分吸収：牧草の養分吸収はイネ科牧草類は穂・稈・葉身・葉鞘・根、マメ科牧草類は小葉、葉柄（茎）・ランナー・根などとその部位によって異なるばかりではなく、刈取時期・施肥・その他の影響をうける。一般的には、イネ科牧草類は葉身がN、Ca、Mgがもっとも高くなり、P2O5%は低く、K2O%は葉鞘がそれぞれ高い。マメ科牧草類はK2O%のまま葉柄または茎と高くなり、その他の成分は小葉に高い。また、部位により生育速度が異なるため、生育適期により養分含有率および水分含有率に差を生ずる。全般に生育良好な場合ほど乾物率が少く、生長中の養分含有率は低い。しかし、追肥を多量に実施すると、グラスのN・P2O5・K2O%、クローバーのP2O5%は増高得る。また、養分含量は季節によっても異なる。

グラスとクローバーの養分含有率を比較すると、K2O%のみグラスが高く、他のN・P2O5・Ca・Mg%などはクローバーが高き。養分吸収量は、クローバーはCaO、グラスはP2O5・K2O・MgOで、とくにK2Oが多い。牧草と魚作物の養分吸収を比較すると、クローバーは作物よりP欠乏に対する抵抗力が強く、クローバーは作物より養分欠乏に耐える性質が弱い。

牧草類土壌は、牧草の養分吸の特徴にしたがって変化する、P2O5・K2O・MgOなどのうち、ことにK2Oの減少がはなはだしい。

II. 飼料作物種子生産対策ならびに優良系統検定の成果について

須藤 芳男（農林省畜産局国飼料課）

畜産局に於て畜産の発展を背景として、飼料作物の増産利用に対する酪農家に対する意欲があれば、その栽培面積を増大させるために、昭和40年度段階では既耕地の飼料作物の生産面積（年間の収穫面積）は50万ヘクタールを越え、また、草地の造成改良も順調に進み牧草牧草の面積も15万ヘクタール程度に達しようとしている。

最近における牛乳の消費需要の伸びなどからみて乳用牛の飼養頭数は引きづき増大するものと予測され、また、肉用牛についても今後の飼育放への方向を示すところから良質粗飼料の消費需要は増大し飼料作物の栽培面積も引きつき増大するものとみられる。

一方その経営は最近における農業をとりまく諸事情を反映して、多様化の方向を指し、これに伴い経営における飼料作物の栽培面積の増大が進んできているが、経営的に制約のある酪農経営のうちにおいて良質粗飼料の供給を引き上げ家畜の収容力の増大をはかり、その経営の安定向上を期待しつつ飼料作物の高品質力的な生産に対する努力が払われている。

このような草食家畜飼養家等の飼料作物の高品質生産