草地土壌の孔隙構造に関する研究

1. 採草地におけるX線造影法で求めた粗孔隙の実態

佐藤幸一

要　旨

佐藤幸一（1991）：草地土壌の孔隙構造に関する研究。1. 採草地におけるX線造影法で求めた粗孔隙の実態。日草誌37，44-54。

播種後14年経過したオーチャードクラス主体の永年採草地の深さ55cmまでの根群域における粗孔隙の形態を土壌の物理性、造影剤によるX線造影法で求められる孔隙形態と根径より推定した。

土壌の物理的性質は1層部分0-10cmが密で、排水や牧草生育に関係する粗大間隙や有効間隙が少なく透水性も低い。II層部分（10-35cm）、III層部分（35cm）は密度が低く粗大間隙や有効間隙が多く透水性も高い。

三次元的にX線造影法で求めた粗孔隙は、I層部分の一部を除くと各層とも植物根（牧草根）に基づく管状の成層孔隙が主体であった。孔隙形態はI層部分で波状の亀裂、II層部分で垂直方向より水平方向に不規則に示された。II層部分は垂直方向に伸ばした半分孔隙が一定間隔で観察に多数示された。III層部分は樹根生に由来する少ない孔隙が主であった。

画像孔隙径は0.37mm-0.85mmの範囲で下層部分ほど大が、牧草根の直径は0.30mm-0.19mmの範囲で下層部分ほど細い。この孔隙径と根径の差は、pF値試験で求めた孔隙分布や透水係数の値ともよく対応していた。

永年採草地の根群域における粗孔隙の形態は、排水領域において大半が牧草根に由来する管状の成層孔隙にもとづいていた。

キーワード：X線、オーチャードクラス、根径、根成孔隙、粗孔隙、土壌孔隙。

緒　言

草地は造成後5-6年経過すると表層土付近の間隙が家畜やトラクター等の営農機械による踏踏圧作用で密化し、土壌の劣化が著しい。そのため排水や保水性は著しく低下してこの機能を失ると考えられるが、実態は必ずしもそうではない。永年草地は密化しているにもかかわらず排水・保水作用や土中微生物の生息に関与する間隙の発達がみられる。今までこの間隙の由来は多くの場合、牧草根の浮遊性形成作用によるものとされてきた。

従来、こうした土壌構造を求めめる方法は土壌間隙に液体や気体等を入れて定量的に求めるか、土壌の切片等を光学の手段により土粒子の形状・配列や土粒子間の間隙性などを形態学的に求めめる方法がとられてきた。しかし、最近徳永らは造影剤とX線を用いて火山灰土壌の林地、水田、畑地の自然構造土の粗孔隙の実態を追求した。成層条件下における粗孔隙の多くが植物根に由来する円管状の成層孔隙にもとづいていることを明らかにしている。

そこで本研究はこうした実験と研究手法をふまえて、草地土壌の根群域における排水性や保水性に関与する粗孔隙の形態を、従来の三次元的法でなく、X線造影法による新たな三次元的法で明らかにしようとした。具体的には牧草根が形成する粗孔隙の分布と形状の実態を明るめる。本報では永年採草地の根群域において、雨水の排水を行う非毛管孔隙を中心とした粗孔隙形態を、従来の方法で求めた間隙に関する物理性と、X線と造影剤で求めた土壌の孔隙形態より検討した。

材料および方法

1. 供試土壌

北里大学獣医畜産学部（034 青森県十和田市前谷地149）一部は第16回国際草地学会議（1989年10月）において発表した。

* 間隙と孔隙：間隙は土粒子にもとづく間隙以外の隙間の総べてを指し、孔隙は円管状の隙間を指す。
** 粗孔隙はpF 1.8以下の毛管孔隙の部分とpF 1.5以下の非毛管孔隙の部分を意味している。
採土条件は採草地として一般的な利用管理がなされ、草場として関所が明らかである表層土で成層下に根群層とした。採土は図1に示すように、青森県七戸町に位置する農林水産省四郷牧場内の永年草地において、1987年10月に深さ55cmまでの根群で5cm深付近（深さ30cmより10cm深付近）に行った。

採土の種類は各層において、土壌の物理性測定用とし、直径5cm、容積100ccの円筒採土管によるものと、X線による土壌孔隙造影演として厚さ6cm、大きさ10cm平均の角型に採土するナイフカット法の2種である。

土壌は黒い、黒クラコンの噴出物に由来する黒ボクが深さ30cm付近まで厚く分布していた。この黒ボク層は15cm深まで腐植含有率に顕著で、黒ボク層の30cm以深は腐植含有量少なく褐色土となり浮石類が50cm深付近より僅かに分布していた。土壌層位は3層より構成し、I層（0-10cm）が地表部のルートマット層とその下のち密な層であり、II層部分（10-35cm）が耕起層とその下の為の揺乱を受けない膨化な層であり、III層部分（35cm-）が下層土となっている。

この草層は耕起法で造成した後、採草専用の利用で14年経過したケイ草科草で植生が良好である。1987年4月の植生調査において基部被度でみるとカーチードグラスが51%で主体を占め、裸地32%、スィートバーナルグラス10%、その他がトールフェスタとレッドトップの構成であった。

2. 物理性の測定方法

物理性に関する実験は、基本的性質として土壌、容積、貫入抵抗値、間隙構造に関する項目としてpF貫入抵抗値、透水試験を実施した。前後の土壌はハイドロメーターを用いた機械分析で、容積重は100ccの定量計土壌管で、貫入抵抗値は最大断面積2.0cm²の単管コーンペネトロメーターで3cm単位に求めた。後者のpF貫入抵抗値はpF1.5までを砂柱法で、pF2.0-pF3.2までを加圧板法で、透水試験は飽和変水位透水試験で求めた。これらの実験法はJIS規格に従って行った18。

3. X線による土壌孔隙の造影方法

土壌孔隙を求める方法は、土壌より比重の大きい造影剤を孔隙に浸透させ、X線を照射して孔隙部分に入り造影剤で生じた陰影を立体透写像として求める形態学的手法を用いた19。

採土からX線撮影までの概略は図2に示すとよくある。採土方法は採土管を用いると打ち込むときの衝撃で亀裂が発生するため、静かに切り出すナイフカット法を用いた。試料の保存・運搬は、試料の水分蒸発を防止するためラップで覆いをしてから蓋付きの硬質プラスチック容器に入れて行った。供試体の大きさは、X線撮影における試料の取り扱いや撮影後に孔隙形態を立体視できるように4.2cm立方体とした。

地形後造影剤の浸透量を目的としてした根交形態のため
オートクレープ処理を行い、試料を補強するため側面と底面を粘土板で被覆した。被覆後の試料は真空中で間隙を脱気水で飽和した。次に造影剤を試料上部に滴液した後、乾燥法により試料周面より水分を蒸発させて造影剤を孔隙内に浸透させた。乾燥のため放置した試料は蛍光板または TV モニターによる透視を時々行い、造影剤の浸透状況に応じて X 線撮影を 3-4 回行った。

X 線フィルムの現像・焼付は一般的な写真現像・焼付に準拠した。撮影装置はソフテックス社製 SV-100 A を用いた。撮影条件は管電圧 60-70 kVp、管電流 3 mA、露出時間 70 sec で、使用したフィルムが富士・工業用 X-ray フィルム #150 である。撮影方法は図 3 に示すように、管理焦点より 50 cm の位置で、試料をフィルムに密着させて X・Y 軸の 2 面を立体撮影した。

4. 造影剤と X 線フィルム特性
造影剤は今まで開発されている中で、黒ポク土壌に十分
佐藤：採草地土壤の粗孔隙の実態

Table 1. Soil physical conditions, radiographic pores and grass roots in each depth.

<table>
<thead>
<tr>
<th>Soil layer</th>
<th>Depth (cm)</th>
<th>Specific gravity</th>
<th>Bulk density (g/cm³)</th>
<th>Porosity (%)</th>
<th>Permeability (K15 cm/s)</th>
<th>Origin of pore*</th>
<th>Number of pore (No./cm²)</th>
<th>Mean diameter (mm)</th>
<th>Mean diameter (mm)</th>
</tr>
</thead>
<tbody>
<tr>
<td>I</td>
<td>0~5</td>
<td>2.38</td>
<td>0.82</td>
<td>65.6</td>
<td>2.00×10⁻⁵</td>
<td>GR</td>
<td>1.0</td>
<td>0.37</td>
<td>7.3</td>
</tr>
<tr>
<td></td>
<td>5~10</td>
<td>2.43</td>
<td>0.82</td>
<td>66.3</td>
<td>3.75×10⁻⁵</td>
<td>GR</td>
<td>1.0</td>
<td>0.47</td>
<td>1.0</td>
</tr>
<tr>
<td>II</td>
<td>10~15</td>
<td>2.43</td>
<td>0.81</td>
<td>66.8</td>
<td>1.53×10⁻⁴</td>
<td>GR</td>
<td>1.6</td>
<td>0.65</td>
<td>0.9</td>
</tr>
<tr>
<td></td>
<td>15~20</td>
<td>2.47</td>
<td>0.75</td>
<td>69.6</td>
<td>8.31×10⁻⁴</td>
<td>GR</td>
<td>2.3</td>
<td>0.56</td>
<td>1.1</td>
</tr>
<tr>
<td></td>
<td>20~25</td>
<td>2.55</td>
<td>0.69</td>
<td>73.0</td>
<td>3.57×10⁻³</td>
<td>GR</td>
<td>2.2</td>
<td>0.51</td>
<td>—</td>
</tr>
<tr>
<td></td>
<td>25~30</td>
<td>2.59</td>
<td>0.67</td>
<td>74.3</td>
<td>9.48×10⁻³</td>
<td>GR</td>
<td>1.7</td>
<td>0.57</td>
<td>1.0</td>
</tr>
<tr>
<td></td>
<td>30~35</td>
<td>2.63</td>
<td>0.65</td>
<td>75.5</td>
<td>8.34×10⁻³</td>
<td>GR</td>
<td>1.8</td>
<td>0.52</td>
<td>1.2</td>
</tr>
<tr>
<td>III</td>
<td>40~45</td>
<td>2.69</td>
<td>0.69</td>
<td>74.4</td>
<td>1.71×10⁻²</td>
<td>PR</td>
<td>1.4</td>
<td>0.78</td>
<td>0.6</td>
</tr>
<tr>
<td></td>
<td>50~55</td>
<td>2.74</td>
<td>0.72</td>
<td>73.8</td>
<td>2.29×10⁻²</td>
<td>PR</td>
<td>1.0</td>
<td>0.85</td>
<td>0.5</td>
</tr>
</tbody>
</table>

a) GR: Grass roots, PR: Plant roots.

Fig. 4. Grain size distribution rate of each soil depth.
*: SL: Sandy Loam, S: Sand, the classification of the International Society of Soil Science.

(3) 間隙分布

土壌構造の基本である固相と間隙割合は乾燥密度と比重をpF試験より求めた。間隙部分は各pF~水分量の関係より粗大間隙（pF＜1.5）、有効間隙（1.5＜pF＜2.7）、微細間隙（pF＞2.7）に区分した。

この間隙分布に関する農業上の水分恒数は各塩塚において現在まで厳密な区分が難しく明確な境界値を推定するに至ってない。一般に排水と通気に関与する粗大間隔はpF1.5~1.8以下、植物が利用できる水分を保水している有効間隔（生長阻害水分点まで）はpF2.7~3.0までの範囲とされている。本研究では供試土が砂質土を主体としているのでこれらの値の下限値を用いた。

結果は図6に示すように、固相割合についてみると、I層部分は各層の中で最も高く34%が示され、一般の
黒ボク土壌と比較しても高い値である。II・III層部分は15 cmまでが33％でI層部分と同じく高く、20 cm以深から30％以下に低下していた。

間隙部分についてみると、粗大間隙は一般に通水において5％以上あることが好ましいとされているが19。I層部分より深く15 cmまでが4％以下で少ない値が示された。II層部分の15 cm以深より9％と増加し、III層部分は20％も分布していた。植物生育において重要な有効間隙はI層部分で少なく、II層部分が15-23％と最も多い値が示された。しかし、III層部分の40 cm以深になると15％以下に減少していた。この有効間隙の深さ別の分布は後述するX線で求めた細孔の分布の別本と類似した分布を示していた。微細間隙は最大でI層部分が60％と深く占め、II層・III層部分で35-40％に減少していた。

これらの間隙分布を牧草生育の立場でみると、I層部分は相対微細間隙が多く、粗大間隙と有効間隙が少ないので牧草生育にとって厳しい条件下にある。しかし、II層部分は粗大間隙と有効間隙がともに増加し、牧草の生育環境として好ましい状態であった。III層部分は下層になるほど粗大間隙が増加し有効間隙が減少して厳しいになっている。

（4）透水係数

表1に示すようにI層部分は10^{-4} cm/secのオーダーで透水性が低く、草地面排水性として不良な値である。しかし、II層部分からIII層部分にかけて10^{-3}-10^{-2} cm/secのオーダーで透水性が高く、排水性が良くなっている。この結果は粗大間隙の分布量とも対応していた。

2. X線造影による孔隙形態

（1）造影剤の浸透過程

X線造影による透写形態を示したのが写真1-6である。この写真は撮影時に試料の間隔を左右6 cmずらして立体視できるように撮ってある。それゆえ写真の観察には、左右写真の境界にカーブを垂直にたて、その上部に顕の中央を約20-30 cm位はにしておき、はじめ取り目側の写真の内側半分位を眺め、次にもう一方の目を静かに聞いて取る様な目で眺めている部分を見るようにと簡単に立体視ができる。または倍率2倍程度の立体写真観察用鏡筒を用いると立体視が容易である。

造影剤が最初に浸入する部分は、非毛管孔隙がメニスカスの曲率半径が最も大きい部分の孔隙である。造影剤の浸透に要する時間はI層部分のち密な層で4-8時間、II層・III層部分のち密でない層で2-4時間であった。

X線による撮影は造影剤の浸透過程を初期、中期、終期の各段階に区分し、それぞれの段階で実施した。この中で影栄形態や依存性の最もよいものを解析に用いた。

造影剤が浸透する標準パターンは、土壤のち密部分に対応しており、I層部分とII層・III層部分で異っていた。I層部分のち密層は造影剤の浸透に時間が要したうえ、影栄の濃淡が薄く、孔隙形態もやや不鮮明に示された。しかし、土壤密度の比較的な低くII層・III層部分は造影剤が速やかに浸透し、得られた影栄が鮮明で孔隙形態も明瞭に示された。

この造影剤の浸透過程を示したもののが図7である。太い

Fig. 6. Solid phase and rate of void distribution of each soil depth at pF < 1.5, 1.5 < pF < 2.7, pF > 2.7.

The first stages ——— The middle stages ——— The final stages

The upper side ——— The lower side

Fig. 7. The processes of contrast medium slowly percolates downward through the sample soil.
X-ray stereoscopic radiography from a 14 year old meadow

Photo 1. Depth 0-5 cm, surface layer, soil pores formed by grass roots, under rootmat zone, cracked and high density layer.

Photo 2. Depth 5-10 cm, surface layer, soil pores formed by grass roots, high density layer.

Photo 3. Depth 15-20 cm, sub-surface layer, soil pores formed by grass roots, middle density layer.
Photo. 4. Depth 30-25 cm, sub-surface layer, soil pores formed by grass roots, low density layer.

Photo. 5. Depth 30-35 cm, sub-surface layer, soil pores formed by grass roots, low density layer.

Photo. 6. Depth 50-55 cm, subsoil layer, soil pores formed by old plant roots, low density layer.
孔隙に造影剤が浸透する初期段階は、はじめ筋状に2-3本が土壌より垂直方向に入り始め、下方で順次伸びていき底位部に到達する。この過程ではまだ水平方向にはほとんど進展がみられない。次に底位部から上部に向かって逆に伸びていく。これは試料側面からの水分蒸発作用と粗孔隙内の水分が試料上面にて著しくある造影剤の自重で押し上げられ、そこから造影剤が浸透していくためである。この初期段階の後半になると試料内部の乾燥による脱水も進み、造影剤が既に浸透している土壌から水平方向に枝分かれして細部に浸透が始まり中期へと移行していく。

中期段階は各写真に示されるように全体の孔隙に造影剤が浸透し細い均一に確認できるようになり、像の観察は好ましい状態になる。すなわち、垂直方向の太い孔隙への造影剤が行き渡る、さらには細く枝分かれの細い孔隙への様子が観察し易い、連続した孔隙の分布状態が明瞭に多数確認できるようになる。

終期段階はさらに乾燥が進み微細間隙へと造影剤が浸透していき、情報量が多いくなり、ついには影が直に重なり合って識別が難しくなる。

(2) 影像の孔隙形状

深さ55 cmまでの像に示された孔隙形状は、I層部分の一部に限られる水平方向に平板状に発達した孔隙を除くと、ほとんどが根層孔隙（植物根に由来する円管状の孔隙）にもとづく像であった。特にI層部分から深さ35 cmまでの孔隙形状は大半が牧草根に由来する根層孔隙であった。これは土壌と牧草範囲の周囲に存在する間隙や造影剤が浸透して影像化したものである。この検証として撮影後に試料を分解しみると、影像の孔隙部分と同一位置に牧草（オーチャードグラス）根が存在していた。昆虫などによる孔隙形状は異種ではほとんど見られなかった。

これらの孔隙形状は形状や分布様式などで分類するとI層部分（0-10 cm）、II層部分（10-35 cm）、III層部分（40 cm~）で区分でき、土壌層位ともほぼ対応していた。

(1) I層部分

0-10 cmの層間付近における特徴的な孔隙形状は写真1の上部に見られるように、水平方向に二重、三重に発達した面状または平板状の亀裂部分を浴びて水平ないし斜め方向に根層孔隙が発達している。これはハートマット層の一部とその直下の土壌で薬剤や凍結作用などで硬盤層が形成され、牧草根が垂直方向に生長するのが困難である。

この亀裂部分より以深の孔隙形状は写真1の下部にみられるように、斜め下方に不規則に発達し、分布が巻きであるが根層孔隙として明瞭に示された。土壌が最も硬い5-10 cm層の孔隙形状は写真2の右側にみられるように、粗大孔隙がほとんど存在しないためにその部分が空洞となってX線で造影されない。写真の中央部分と右上の雲状に示される形状は微細な部分の孔隙である。

画像の孔隙の本数は表1に示すように、平均して1.0本/cm²で層別にみて少ない。スケール頸微鏡で計測した画像孔隙径は平均直径で0.27-0.47 mmである。これに対し、土壌を分解して求めた牧草根の平均根径は0.27-0.30 mmである。このように層別における牧草根径と土壌孔隙径の差は0.07-0.20 mmであることから両者の間隔が極めて小さいと判断される。

(2) II層部分

深さ15-35 cmの層における孔隙形状は写真3、4、5に示すように亀裂がほとんどなく、明瞭で先端根層孔隙がほぼ一定間隔で樹齢のごとく垂直方向に多く見られた。さらに垂直方向の太い孔隙から枝分れした水平方向への細い孔隙が数多く示された。

このII層部分は根層孔隙の最も多く発達しており、表1に示すように本数も1.6-2.3本/cm²と層別にみて多い。画像孔隙径は平均直径で0.51-0.63 mmである。孔隙の中の存在する牧草根の平均径は0.21-0.23 mmで、両者の差が0.31-0.40 mmであった。このため根系と土壌の隙間に造影剤が充填され、画像は連続して鮮明に示された。また造影剤が速やかに吸収するため、写真の下部はより黒化が進んでいた。

このII層部分は耕起層の層でもあることから、写真3の即結状層のある層と写真5の即結状層のない層と比較してみた。しかし、孔隙形状に明確な差はみられなかった。これは耕起層の新しい根系群が不耕起層の根層孔隙を利用して耕起層以深に生長したもののと考察される。

(3) III層部分

40 cm以深に写真6に示すように、現在生育している牧草の根による孔隙形状は少なく、ほとんどが徳永らが明らかにした火山灰土下層に特徴的な孔隙形状が示された。その形態は孔径が大きく、屈曲し、枝状で内部が空洞化し、古い時代の植物根によって形成された根層孔隙が多く推定されている。

表1に示すように孔隙本数は1.0-1.4本/cm²と少なくなっており、造影剤径の平均直径が0.78-0.85 mmで各層の中で最も大きく示された。土壌を分解して求めた牧草根の平均径は0.19-0.20 mmであることから、孔径の差は0.58-0.66 mmであった。このような大きな隙間はIII層部分に大きな通気・通水性をもたらす要因とな
部 分 影 下 層 た 土 砂 等 地 上 部 か ら 土 砂 等 範 囲 て
と
1 孔 隙 目
方 向 べ 管 状 の 太 水 平 方 向 と 孔 隙 も し 布 系 の て が 型 お て が ま め 約 ま た ら と し て か て も な 定 義 に し た た め プ ク ラ ーク 22 に お よ め て い た と し た 新 強 が 全 あ い 限 定 て る ち に よ る で
沿った部分では、網目あるいは茎の枝状に分布し、屈曲した管状の孔隙形態が示された。ち密度の低い I Ⅲ層 部分では円柱状を呈し、樹枝状に分布した管状の形態が主体である。形状は各層において連続した管状を示すが、ち密度や植被により差がみられた。

結 論

草本造成後 14 年経過した採草地の粗孔隙は深さ 55 cm までの根群域において各層が根粗孔隙によって形成されていた。この粗孔隙の由来は孔隙形態や試料に含まれる根遺体から考えて牧草根によるものであった。牧草根は永年草のある表層に発達する比較密な土壌においても連続した根管孔隙を形成していた。

この根管孔隙は牧草根に限らず、一般的な植物根によ も同じ形態を形成する。しかし、人工的培養にとづく永年草は特定の草種に限られているので孔隙形態に一定はいない。そのため、この根管孔隙は草地が造る特異的な土壌環境とみなせる。

土壌の隙間に関する分類は今まで基本の方法が示され、その形成要因により次のように整理されているが土粒子および根粒の内因的要因による形態として、1. 一次粒子相互間の隙間、2. 根粒の隙間、3. 根粒の相互間の隙間、そして気象因子などの外因的因子による形状として、4. 土壌にともなう収縮によって形成される亀裂、5. 植物根の腐朽、地中動物の通行、ガス発生などによる隙間である。

このうち孔隙の形態に関する区分は、ジョンソン23 が孔隙の数、幅あるいは径、連続性、方向性、存在状況、形態について行っている。同じ CLARK24 が孔隙形態を孔隙と亀裂に大別し、大きさ、径、幅、形状と方向性で定義している。しかし、これらの区分方法は土地での断面観察や室内における二次元的土壌表面の形態観察などを主体としており、土壌内部を三次元的にかつ連続的に観察するには至っていない。本研究においてようやく永年草のこれらの実態が三次元的に明らかにされたといえよう。そこで X 線造影法で求めた永年草採取の粗孔隙形態に関する新しい知見は以下のようにまとめられる。

排水領域を中心とした根群域の各層における粗孔隙形態は植物根が関与して生成した根管孔隙によるものが主体であった。これらの粗孔隙は乾燥や凝結作用を強く受ける表層の I Ⅲ層 部分や下層の II Ⅲ層 部分を除くすべて根植生の牧草根によるものであった。すなわち、永年草 準地の土壌空間に存在する粗孔隙は一次粒子や根粒にと づく内因的要因より牧草根の外因的要因が支配的である。
佐藤：採草地土壌の相孔隙の実態

といえる。

本研究の結果は火山灰土壌由来の黒ボク土における永年採草地のものである。牧草根が造る根成孔隙は草地土壌がもつ特異的現象と判断されるが、土壌や草種そして気候などが異なる場合の普遍性については今後の課題である。

謝辞

本研究は昭和62年度私学研究福祉会の国内研修で昭和62年10月1日より6か月間、岩手大学農学部農業土木学科農地造成学講座において実施した。研修において研究のすべての面でのご指導と論文の校閲を賜った岩手大学農学部の徳永光一教授に心から御礼を申し上げる。また研究を進める上で貴重のご助言・ご助力を頂いた同学科の馬場秀和助教授、古賀 淑助教授、石田智之助教授、そして論文の校閲を賜った北里大学的小林裕志教授の各位と本研究の機会と便宜を与えてくれた北里大学と私学研究福祉会に深謝致します。

引用文献

1) 畑石 正 (1965) 土壌孔隙の測定について。土壌の物理性 11/12, 47-58。
3) 平地利昭 (1955) 本道における牧草の低収原因対策。グラース 29 (3), 4-9。
4) 北条豊 (1962) 火山灰土壌における牧草の集団栽培に関する土壌科学的研究。東北農業報告 23, 27-51。
5) 小林裕志・大竹良明 (1977) イネ科牧草種の物理的機能に関する研究（三）。日草誌 23, 225-240。
6) 小林裕志 (1980) 土壌の粗粒形成に及ぼす作物根の影響。土壌の物理性 42, 26-32。
7) 久保亮五・長倉三郎・井口洋夫・江沢 洋 (1987) 理化学事典。岩波書店。東京。p. 1316。
9) 松中周夫・小関健一・松代光吉・赤城鶴藏・西田研治 (1963) 減年化に伴う草地生産力低下の土壌間差異。日草誌 29, 212-218。
10) 松野 正 (1961) 十和田、八甲田火山噴出物。青森県農試研報 6, 1-73。
12) 坂本 克 (1985) 北東地方における低生産草地の低収化要因と生産力回復に関する研究。日畜東北支部会報 35, 114-124。
13) 田部公子 (1965) 土壌構造の顕微鏡観察法。土壌の物理性 11/12, 58-68。
14) 徳永光一・成田 市・深谷高俊 (1984) 重液浸入法の開発とそれによる土壌間隙の粗 X 線透写所についての考察。農土論集 114, 61-68。
15) 徳永光一・佐藤照男・菊池 宏・今 和則 (1985) 種質水土の相孔隙の実態と透水率について。土壌の物理性 51, 49-57。
16) 徳永光一 (1985) 土壌の孔 関 X 線の科学 1, 33-40。
17) 徳永光一・竹内正己・林 高峰 (1986) 火山灰下土壌における相孔隙の生成的特徴について。農土論集 126, 75-80。
19) 山崎不二雄 (1972) 農地工学 (下)。東京大学出版会。東京。pp. 386-390。
20) 土壌物理研究会 (1979) 土壌の物理性と植物生育。養賢堂。東京。pp. 82-84。
21) 土質試験法改定編集委員会 (1979) 土質試験法。土質工学会。東京。pp. 36-365。
23) 富士写真フィルム株式会社 (1988)。富士工業用 X–レイフィルムデータシート。pp. 1-10。
24) 農地と水編集委員会 (1984) 農地と水。農業振興会。東京。pp. 89-93。
25) 農林省農林水産技術会議 (1972) 農地かんがい。農林技術出版社。東京。pp. 56-75。

（平成2年9月10日受理）
Studies on the Macropore Structure of Soils Formed by Grass Roots

1. The morphology of the macropores in the meadow
determined by X-ray and contrast media

Koichi SATO
School of Veterinary Medicine and Animal Sciences, Kitasato University,
Towada, Aomori 034, Japan

Summary

The aim of this paper is to show the morphology of macropores in the root zones under
the permanent meadow.

The structure of macropores was studied by examining the physical conditions of the soil,
the morphology of macropores by X-ray and contrast media, and the root system.

Soil samples were collected from the root zone shallower than 55 cm in a meadow
composed mainly of orchardgrass seeded fourteen years ago. The samples were classified by
surface soil layer (0-10 cm), sub-surface soil layer (10-35 cm), and subsoil layer. Each layer
was composed of volcanic sandy soil.

The physical condition of the surface soil layer was dense and solid, the micropores and
the effective pores were small, and the permeability was low. Because of the low density of
the soil, the macropores and the effective pores increased in the sub-surface soil layer, but the
subsoil layer was higher in permeability.

The macropores of the above soils were mainly tubular root pores formed by the grass
roots. In the surface soil layer, the pores developed irregularly in the horizontal and the
slanting directions along the crack rather than in a vertical direction because of the dense soil.
In the sub–surface soil layer thicker pores developed in a vertical direction at a constant
distance, but the thinner pores clearly developed in the horizontal direction from these thick
ones. In the subsoil layer, the pore morphology was not formed by the grass root, but instead
originated from previously planted grasses.

Most of these radiographic images were formed by the contrast media. They permeated
into pores as follows in the surface soil layer and the sub–surface soil layer, the pores formed
between the grass root and the soil but in the subsoil layer, the pores were formed by the root
system of the previously planted grasses. The diameter of the radiographic pore ranged
between 0.37 and 0.85 mm, but it was larger in the lower layers. In contrast, the diameter of
the grass roots was larger in the shallower layer, and ranged from 0.30 to 0.19 mm.

Since the pore morphology showed a good correspondence with the soil's physical
conditions, it is concluded that the morphology of the micropore of the root system in the
drainage zone of the permanent meadow forms mostly by tubular root pore which originates
from the grass roots.

Key words: Macropore, Orchardgrass, Pores formed by roots, Soil structure, X-ray.