目標
植物の群落構造を空間データとして解析するためには、3次元モデルリングが必要である。そのための手法として、レーザや赤外線などによる距離の計測や3次元デジタイザによる座標の取り込みが広く用いられている。これらの方法は比較的正確に座標値を取得できるが、機材が大がかりで高価となり取り扱いにも技術を必要とする。また、樹冠構造や樹木の形態など、屋外の大きな対象物を扱うのには向いていないと思われる。
そこで、近年普及しているデジタルカメラで誰でも容易に撮影できるステレオ写真を用いて、その画像処理により空間データを取得し、再構成された3次元データを解析する手法について検討した。

方法
(1) フラクタル解析システムの高度化
前報（日誌誌47（別）62-63）では、白黒空中写真をそのまま解析し、表面のテクスチャを解析するためにプログラムを高度化したが、今回は、立体を一定間隔毎の平行面で連続してスライスした断面の画像を解析する機能を追加した。

(2) 空中写真への利用（樹冠高さの把握）
まず、白黒空中写真のステレオペア画像から、相対的な高低差を算出した。その結果得られる画像を元画像と比較し、妥当性を検討した。空中写真の撮影日は1998年11月24日で、広葉樹の落葉後であった。
なお、ステレオ画像から高低差を取得するプログラムは、ZK Stereo.exe ver.1.01 (C. Lawrence Zitnick 2000)を使用した。

(3) 樹木形状の解析
デジタルカメラで撮影したステレオペア写真から、ZK Stereo.exeを用いて相対的な前後差を算出した。その画像から推定される立体を一定間隔毎の平行面でスライスした断面の画像を作成し、フラクタル次元を算出した。
相対的な前後差から一定間隔毎スライス画像を取得するプログラムは自作した。

結果
(1) 3次元データの連続スライス画像を解析するための画像データ入力画面を図1に示した。通過番号をファイル名とする複数画像のうちの最終画像ファイル名を選択し、画像サイズと画像間距離の相対値を入力するようになっている。また、フラクタル次元の算出例を図2に示した。フラクタル次元は0〜3の間の値となる。

(2) 例として用いた空中写真を図3に示した。また、相対的な高低差を表す画像を図4に示した。この結果から、スギ植林と雑木林で樹冠高度が異なることや、建物の高さとの違いなどがほぼ妥当な範囲で把握できることがわかった。しかし、空中写真およびそのスキャン画像の精度により、部分的にノイズによる誤認識があること、ステレオペア間でねじれやゆがみがある、誤認識を生じやすいうことが問題である。

(3) 樹木形状については、樹木の一方向からだけのステレオ写真（図5）を用いたため、その前後差画像（図6）から作成されたステレオ画像（図7）は必ずしも現実を反映しているとはいえないので、立体形状の複雑性についてはある程度相互に比較できるデータが得られると考えられる。

キーワード：fractal, stereo pair image, image processing.
図1. 连続スライス画像入力画面。

図3. 白黒空中写真。

図5. 樹木の写真

図6. 相対前後差。

図7. 樹木のスライス画像.

図2. フラクタル次元の算出例。

<table>
<thead>
<tr>
<th>結果表示</th>
</tr>
</thead>
<tbody>
<tr>
<td>画像サイズ（横×縦）</td>
</tr>
<tr>
<td>被度（％）、誤度差</td>
</tr>
<tr>
<td>相関係数（n）</td>
</tr>
<tr>
<td>フラクタル次元</td>
</tr>
</tbody>
</table>

図4. 相対高度差。