採草用ペレニアルライグラス単播草地における施肥配分
岡元英樹*・奥村正敏・木島誠二**・二間世***
（北海道立天北農業試験場、**現北海道立中央農業試験場）

1. 目的
ペレニアルライグラス（Lolium perenne，以下PR）は北海道北部の酪農地域において、
放牧草種として導入され、近年集約放牧にも供されつつある。当地域の気象条件に適し、
今後は採草用としても栽培面積の増加が期待されるこの草種を良好に栽培管理する技術を
確立するために、単播草地における施肥配分について検討を行った。

2. 方法
供試草地：更新2年目のPR単播草地（フレンド）を用いて、平成11〜13年にかけて
3ヵ年実験を行った。刈取り回数は年3回刈りと4回刈りを多回（8〜9）刈
りと比較し、いずれも目標とする収量およびTNN収量が得られたが（表1）、
収穫作業の効率性を考慮して年3回刈りとした。1番草は6/14（例年出穂始
〜出穂期）、以後50日毎に再生草の刈取りを行った。
施肥配分：年間施肥量はオーチャードグラスの北海道施肥標準に準じ、10aあたりN
18kg-P2O5 6kg-K2O15kgとした。施肥配分は前期重点、均等施肥、後
期重点、早春代替施肥、一部秋施肥の5処理を設けた（表2）。P2O5、K2O
の配分もNに準じた。

3. 結果
3ヵ年平均乾物収量では、均等施肥区が最も高く、以下、一部秋施肥区＞前期重点区、
後期重点区＞早春代替施肥の順であり、早春代替施肥区が最も劣った（図1）。この要因は、
均等施肥区は1番草に対して他の区より利用率が高く、年間を通しても窒素の吸収が偏り
なく行われたためと考えられた。これに対して早春代替施肥区は1番草の窒素利用率が他
の処理に比べて大幅に低下し、年間の窒素利用率も低かった。これは早春代替施肥区にお
いて前年秋に施肥した窒素が早春までに表層から流亡したからと思われる（図3）。また、
後期重点区は年間の窒素吸収量は処理区間で最も高かったが、窒素吸収は3番草に偏って
おり、1番草の窒素吸収量は少なく（図2）、その生育が他処理に比べて劣ったため、年間
収量では均等施肥区に及ばなかった。
基底被度のPR割合からみた永続性では均等施肥区がやや優り、一部秋施肥区が劣る傾向
が認められた（表4）。
以上の結果から、収量・窒素利用率・永続性等からみた採草用PRの最も望ましい施肥配
分は、早春、1、2番草後にそれぞれ等量を施肥する均等施肥であった。

Key words：Perennial ryegrass, Pure stand, Fertilization, Yield
表1 割取回数による収量及びTDN収量の変化

<table>
<thead>
<tr>
<th>割取回数</th>
<th>乾物収量 (kg/10a)</th>
<th>TDN収量 (kg/10a)</th>
</tr>
</thead>
<tbody>
<tr>
<td>年3回割取り</td>
<td>909</td>
<td>623</td>
</tr>
<tr>
<td>年4回割取り</td>
<td>872</td>
<td>651</td>
</tr>
<tr>
<td>年8〜9回割取り</td>
<td>734</td>
<td>507</td>
</tr>
</tbody>
</table>

表2窒素施肥配分

<table>
<thead>
<tr>
<th>施肥時期</th>
<th>窒素分施用量 (kg/10a)</th>
</tr>
</thead>
<tbody>
<tr>
<td>処理区名</td>
<td>早春</td>
</tr>
<tr>
<td>前期重点（前期）</td>
<td>9</td>
</tr>
<tr>
<td>均等施肥（均等）</td>
<td>6</td>
</tr>
<tr>
<td>後期重点（後期）</td>
<td>3</td>
</tr>
<tr>
<td>早春代替施肥（代替）</td>
<td>0</td>
</tr>
<tr>
<td>一部秋施肥（秋）</td>
<td>6</td>
</tr>
</tbody>
</table>

表3最終番草後〜早春の土壌中窒素の動向（0〜5cm層位）及び牧草体窒素利用率

<table>
<thead>
<tr>
<th>前期</th>
<th>均等</th>
<th>後期</th>
<th>代替</th>
<th>秋</th>
</tr>
</thead>
<tbody>
<tr>
<td>早春土壌残存無機態窒素量（mg/100g）</td>
<td>0.42</td>
<td>0.72</td>
<td>0.45</td>
<td>2.83</td>
</tr>
<tr>
<td>行方不明窒素割合（%）</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>79</td>
</tr>
<tr>
<td>1番草窒素利用率（%）</td>
<td>43</td>
<td>55</td>
<td>41</td>
<td>16</td>
</tr>
<tr>
<td>年間窒素利用率（%）</td>
<td>55</td>
<td>63</td>
<td>67</td>
<td>43</td>
</tr>
</tbody>
</table>

図13ヵ年平均乾物収量

図2番草毎窒素吸収量（3年目）

表4試験終了時基底被度

<table>
<thead>
<tr>
<th>処理</th>
<th>前期</th>
<th>均等</th>
<th>後期</th>
<th>代替</th>
<th>秋</th>
</tr>
</thead>
<tbody>
<tr>
<td>PR</td>
<td>70</td>
<td>73</td>
<td>67</td>
<td>62</td>
<td>56</td>
</tr>
<tr>
<td>その他</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>2</td>
</tr>
<tr>
<td>裸地</td>
<td>30</td>
<td>26</td>
<td>33</td>
<td>38</td>
<td>42</td>
</tr>
</tbody>
</table>