1-28 ニューラルネットワークを用いたリモートセンシングによる収量予測モデルの開発

【目的】
衛星データを解析することにより、広範囲にわたる草地を同時期、また長期間にわたりして調査することができる。また、リモートセンシングによって見られる現像収量の傾向が高まるという、状態に応じた整備改良の現場的、適切な管理、利用を導入することが可能になり、草地の生産性向上と草地管理の効率化を図る上で極めて有用な手段になるものと考えられる。本研究では、栽培草種、刈取り時期、収量が予めわかった岩手県内の岩手牧場を対象として、リモートセンシングデータを元に、重回帰分析モデル及びニューラルネットワークモデルを用いることにより収量の推定を行った。

【方法】
1994年5月24日に観測されたランドサットTMデータから解析用ソフト（EARDAS IMAGIN 8.4）を利用し、岩手牧場の圃場のうち収量データが得られている42牧区について、各牧区ごとのBand1-7及び正規化植生指数（NDVI=（TM4-TM3）/（TM4+TM3））、比植生指数（RVI=TM4/TM3）の平均値を算出した。そして、実際の一番草刈り取り日及び収量データを元にモデルを作り、収量の予測を行った。

収量予測では、圃場別の一番草収量（kgDM/10a）を目的変数、ランドサットTMデータより算出した各バンドの反射強度と植生指数（NDVI、RVI）の平均値、撮影から刈取りまでの日数（DAY1）、日数の二乗（DAY2）、撮影から刈取りまでの積算気温（TP1）、平均気温（TP2）及び有効積算気温（TP3）を説明変数として重回帰分析を行った。重回帰分析では、変数選択法を使用したモデル（モデルI）及び全説明変数を使用したモデル（モデルII）を作成した。

また重回帰分析に加え、ニューラルネットワークモデル（モデルIII）を作成した。モデルは、ニューラルネットワーク構築プログラム（NEURO01）を用いて、入力層に各バンドの反射強度平均値、植生指数（NDVI、RVI）、DAY1、DAY2、TP1、TP2及びTP3、中間層は2、出力層に推定した観測日の現存量とし、モデル化を行った。

【結果】
重回帰モデル及びニューラルネットワークモデルによる推定収量と実収量の散布図を図1に示した。モデルI、II、IIIにおけるr²は、それぞれ0.54、0.61、0.77であった。重回帰モデルであるモデルI、IIにおいて、変数選択法を使用し6説明変数を使用したIより全14説明変数を使用したIIの方が高い結果を示した。説明変数が多ければr²が高くなるが、それほど大きな差は見られなかった。ニューラルネットワークを用いたモデルIIIは、3つのモデルの中で最も高い値を示し、重回帰モデルであるモデルI、IIよりも高い予測精度を示した。

重回帰モデル及びニューラルネットワークモデルによって推定した収量を元に各圃場ごとの収量マップを作成し、図2に示した。実収量の収量マップと比べるとモデルI、II及びIIIいずれも過小評価の傾向が見られた。特にモデルIの過小評価が目立った。モデルII及びIIIは多少過小評価の傾向が見られるが、実収量の収量マップと大きく変わらなかった。このことから、モデルII、IIIは収量予測モデルとして有効であると考えられた。
図1 重回帰モデルおよびニューラルネットワークモデルによる推定収量と実収量の比較
モデルⅠ：重回帰モデル（変数選択法） モデルⅡ：重回帰モデル（全説明変数を使用） モデルⅢ：ニューラルネットワークモデル

図2 園場別の実収量と重回帰モデルおよびニューラルネットワークモデルによる推定収量の比較
モデルⅠ：重回帰モデル（変数選択法） モデルⅡ：重回帰モデル（全説明変数を使用） モデルⅢ：ニューラルネットワークモデル