特集 —2010年口蹄疫—残された課題を中心に—

湿原を含む家畜埋却地周辺の環境モニタリング

鈴木祥広・竹下伸宏1・関戸至雄・畠垣仁根2

宮崎大学工学部（889-2192 宮崎市学園木花台西1-1）
1 宮崎大学農学部（889-2192 宮崎市学園木花台西1-1）

受付日：2012年6月26日/受理日：2012年8月15日

キーワード：家畜埋却地、環境モニタリング、湿原、地下水環境

Environmental Monitoring around Livestock Mortalities Burial Site including Marsh
Yoshihiro Suzuki, Shinichi Takeshita, Tomoo Sekito and Hitone Inagaki
Faculty of Engineering, University of Miyazaki 889-2192, Japan
1 Faculty of Agriculture, University of Miyazaki 889-2192, Japan

Key words: Environmental monitoring, Groundwater environment, Livestock mortalities burial site, Marsh.

はじめに

平成22年4-7月にかけて宮崎県東部の西都・児湯地域を中心に発生した口蹄疫の防制対策として、家畜約30万頭を全頭処し、地下埋却を行ったが、埋却地は268箇所、合計面積は約868haに及び、大規模かつ広範囲なものであった。口蹄疫拡大の特徴としては、感染区域が児湯地域の中央に位置する川南町の南側のかなり広い範囲に急激にかつ一斉に拡大していたことが明らかとなっている。

川南町における口蹄疫の発生が集中した国道10号線沿いに、天然記念物の貴重な湿原植物が生育する川南湿原（面積約31ha）がある。図1に川南湿原の位置と図2に湿原全景を示す。宮崎大学では、川南湿原の環境保全のために環境モニタリングを平成7年度から継続して実施しており、自然的な地下水位の高い傾向にあることが明らかとなっており、埋却地が地下水の水質に深刻な影響を及ぼす可能性が考えられた。そこで、口蹄疫発生地帯における地下水位と水質の観測を長期間継続して行うため、川南町内に4箇所の観測井を新たに設置し、平成22年12月より地下水位の自動計測を、平成23年3月からは地下水の水質観測を1回/月の間隔で継続的に実施している。

本報告は川南湿原におけるモニタリングデータを紹介し、さらに新設した観測井における計測開始から現時点までの地下水中に関するモニタリング情報を計測・分析した結果を整理した。また、大学の調査と併行して行われている宮崎県による調査の概要を合わせて紹介する。さらに、埋却家畜からの環境汚染物質発生に関する基礎的検討についても報告する。

川南湿原の地下水環境の特徴

川南湿原では、湿原周辺の都市化に伴い、湿原周辺から流下する生活雑排水等による水質の悪化などによって、天然記念物の貴重な湿原植物が減少する傾向にあった。湿原植物の生育に大きく影響を与える水環境について、湿原内の地下水位の変動などを用いて平成7年度から現在まで（竹下・鈴木2010）、水質の変動を平成7年度から平成16年度まで調査し、湿原の生態植物の保存・増殖について対策の提案（中園ら2004）を行っている。

図2に示すA地点とB地点の地下水位の変動を図3に示す。地下水位の変動は、降水との関連が非常に大きく影響しており、梅雨期に降水があると地下水位が地表面まで上昇する傾向にあることが明らかになっている。また、水質については、水素イオン濃度（pH）、溶存酸素量（DO）、アンモニア態窒素（NH4-N）、亜硝酸態窒素（NO2-N）、硝酸態窒素（NO3-N）、リン酸塩（PO4-P）、有機態窒素（Org-N）、有機態リン（Org-P）、化学的酸素要求量（COD）、無機態全窒素（TIN）、全窒素（T-N）、全リン（T-P）を計測した。湿原内の水質状況については、リン濃度が0.01-3.10mg/L、窒素濃度が2.56-80.25mg/Lであり、環境省の定める環境基準（全リン0.03mg/L、全窒素0.4mg/L）を大幅に上回り、生活排水や生活雑排水の流入により大きな影響を受けていると推測された。

地下水流動の長期モニタリング

1. 長期モニタリングの必要性とその方法

家畜の大規模埋却による環境への影響については、国内外では同様に環境への影響を受けており、この影響を適切に把握し、長期的にモニタリングすることにより、環境への影響を最小限にとどめることができる。
データは報告されておらず、地下水汚染のリスクの可能性を指摘するのが今、現在のところである（The Royal Society of Edinburgh 2002 : Health Protection Agency 2002 : MacArthurら 2003）。また、川南地域では、地下水を農業用に使用している事例が多いので、地下水の流動と水質の変化については、モニタリングとその評価を長期に渡る必要があると考えた。そこで、地下水の水位、水質などのモニタリングとしては、特に、口蹄疫の発生が集中し、家畜の埋設量の多い川南町を中心とする地域を対象とし、宮崎県や川南町の協力を得て、川南地区の段丘の上部と下部に、図4に示すA (No.1) - H (No.4)の位置に4箇所の観測井を新たに設置した。観測井は、ポーリング孔に直径50 mmの塩ビ管を挿入し、地下水位以下については有孔管とした。地下水位については、ロガー式水位計による自動計測とし、水質については試料を採取し、分析評価を行う体制を整えた。

なお、観測井A - Hの地理的な特徴は、I段丘上部の畑地集中部、II段丘中央部の地下水の流れが河川へ流入する地点、III段丘の中流域の流入点、IV段丘の海岸部である。また、図4の油は、埋却地の位置を示す。

2. 地盤の透水係数

地区内の地質状況を把握するために、観測井戸のボーリングコアを探取し、現地で透水係数試験を行った。ボーリング結果によれば、表層の下は表層下10〜20 mに存在する粘岩、風化岩層までシルト質砂と砂利・礫混り粘土質砂が堆積しており、観測井No.1においては、玉石混じりの砂礫層にシルト質砂を挟む柱を呈していた。

地盤の現場透水試験は、帯水層（シルト質砂）を対象とし、試験方法としては、帯水層の透水係数が10^-7cm/s 程度と推
定され、および縦隔による孔の保持が困難と考えられるので、ケーシングを用いた非定常のチューブ法を用いて行った。計測した透水係数は、観測井 No. 1 と No. 4 が 10⁻¹ cm/s、観測井 No. 3 が 10⁻³⁻¹ cm/s で、観測井 No. 2 は測定が多々、計測不能であった。

3. 地下水の流動調査
観測井 No. 1-No. 4 における平成 22 年 12 月から平成 23 年 11 月までの地下水位の経時変化を図 5 に示した。
観測井 No. 1 は、無降雨期間において地下水位が地表面下 16m に低下するが、6 月には約 5m 付近まで上昇し、水位変動幅が大きくなっている。また、降雨に対して比較的緩やかに地下水位が応答していることから、不飽和域が大きいと考えられる。
観測井 No. 2 は、降雨がほとんどない期間において、地表面下 2m の位置に水が存在するが、降雨時には地表面まで地下水位が上昇する。これは平田川の干渇流域の段丘直下に位置する湧水地点の特徴を表している。
観測井 No. 3 は、観測井 No. 1 と同じく段丘上に位置しているが、無降雨期間において地下水位は概ね地表面下 4m 程度である。井戸の位置が河川に近いことから、降雨時には流水が直接に応答し、地下水位が 2m まで上昇している。
観測井 No. 4 は、5 月下旬-7 月上旬に地下水位が地表面下約 1m に位置する期間が続いている。これは近傍の水田において降雨が行われている影響と考えられる。さらに、降雨時には急激に水位が上昇するが、その後の水位の緩やかに進むの観測井に比べると、非常に緩やかである。これは流域最下流部であるために、降雨終了後も上流からの雨水の流入がしばらく続くためと考えられる。また、観測井 No.2- No.4 の地下水位は、降雨に敏感に応答しており、不飽和域が小さいと考えられる。

観測井 No. 1, No. 3, No. 4 の周辺には多くの埋設地があるが、図 5 の地下水位変化から、観測井 No. 4 周辺の埋設地は 5 月下旬-7 月上旬の梅雨期、あるいは台風などによる大きな降雨発生時には、地下水の浸出があると考え、その
水質への影響が懸念される。
図6は、地域の地下水位が比較的高い6月1日における地下水位の平面分布を示し、地下位位が高相から推察される地下水の流動方向を矢印で示している。観測井No1周辺における段丘上の地帯の地下水は、国道10号線を越えた南東方向へ流れ、平田川河口付近の河川部へ流入し、海へと流れていると考えられる。観測井No3付近の地下水については、南側に流れ平田川へ流入している。観測井No4周辺においては、段丘側を流出して直接海へと流れていると考えられる。

地下水位の平面分布から、埋め立ての汚染された地下水は、国道10号線の南東側、観測井No2のやや南側の平田川が湾曲する位置（図6の中央右の白抜き橋河川）で最も集約していると考えられる。

地下水水質の長期モニタリング
1. 調査概要
新設した4箇所（No1・No2・No3・No4）の観測井において水質調査では、家畜埋蔵による地下水の水質への影響を評価する目的として、①石灰散布によるpHの上昇とCa\(^{2+}\)濃度の増加、②埋め立ての家畜埋蔵により塩分の増加、③ダム水質の影響によるNH\(_4\)\(^+\)の混入、④土壌水質の影響によるNO\(_2\)\(^-\)とNO\(_3\)\(^-\)の各無機物質濃度の増加に注目し、地下水の水質調査を開始した。そこで、2011年3月30日から2012年1月26日までの調査結果を報告する。

2. 試料の採取と分析方法
試料は、地下水表面から水深約1mの地下水を円筒状の採水ケを用いて採取した。採取した試料は、評価すーソリガレオン瓶に密封し実験室に持ち帰り、直ちに基本水質試験の測定と前処理を行った。

pHと電気伝導率（EC）はpH・イオン・伝導率計、濁度は積分球式濁度計を用いて測定した。クロマトグラフィーに用いる試料は、0.45μmメンプレンフィルターで通過し、分析に供するまで冷蔵保存した。本調査で、主な陽イオンとして、Li\(^{+}\), Na\(^{+}\), NH\(_4\)\(^+\), K\(^{+}\), Mg\(^{2+}\), Ca\(^{2+}\)をイオンクロマトグラフを用いて測定した。また、主要な陰イオンとして、F\(^{-}\), Cl\(^{-}\), NO\(_3\)\(^-\), Br\(^{-}\), NO\(_2\)\(^-\), SO\(_4\)\(^{2-}\), PO\(_4\)\(^{3-}\)をイオンクロマトグラフで測定した。なお、クロマトグラフィーによる陽イオンと陰イオンの分析操作の詳細は、水道試験方法に従った。試料の全有機炭素濃度は、全有機炭素計で測定した。

3. 分析結果
(1) pHと電気伝導率（EC）
地点No2-No4のpHは調査期間を通じて6-8の範囲にあり、川南河川病検査センター内の浄水池のpHと同様に比較的安定した変動を示し（図7-8）。一方のNo4は6-7の変動にかかってpHが5.24まで大幅に低下し、さらに11月に中性付近への回復する傾向を示した。ECは各調査地点において調査期間を通じて6-7の変動が観察されているものと考えられる。No1とNo2のECは200μS/cmに上昇しており、特にNo1は300μS/cm近くまで達している。一方にNo3のECは極端に低く、10月以降は50μS/cmに低下している。一般的に雨水のECは10-30μS/cmの場合が多く、No3は雨水の影響を直接受けていない可能性がある。

(2) 濁度と有機炭素素（TOC）
地下水層は雨水や放流水が浸透して形成されるため、地下水には懸濁物などの浸透成分が非常に少なく、予想されたが、降水後の少ない3-4月。12月、2012年1月には、河川の汚染の判断基準とされる10度（カオリノ）を大幅に越えない状態が各地点で観測されている（図6-7）。No1とNo4は有機物懸濁物が多く含まれていた。また、No2地点の試料は、オレイン酸を示し、揮発性に伴う濁度増加を示す。

TOCについてみると、No2においてパルス的に増加し93.7mg-C/Lの値を示した。また、No3では調査開始期の3月に6.8mg-C/Lの高濃度のTOCが検出され、徐々に減少して2012年1月には0.24mg-C/Lまで低下している。汚染が進行している都市下水道において10mg-C/L前後のTOCが検出されるので、今回地下水から検出されたTOC濃度は非常に高いと判断される。断面的であるが、No2とNo3の地点では、何らかの有機物源からの浸透があったと考えられる。その他の地点は、安定的に処理1mg-C/L以下のレベルで維持しており、有機物の浸透は認められなかった。

(3) 陽イオン
NO\(_3\)\(^-\)は、No1においては3-5月にかけて1.62-1.92mg/lの範囲で検出されたが、その他の地点では検出されず、6月以降についてはNo1-No4のいずれの地点からもNO\(_3\)\(^-\)は検出されなかった。No1とNo4では、Na\(^{+}\)と比較してCa\(^{2+}\)の方が高く（図7-8）、これに対してNo3ではCa\(^{2+}\)よりもNa\(^{+}\)の方が高くなっている。

図6の地下水位平面図をみると、No3の地下水系は、No1とNo4と異なっており、地域および地下水への浸透によって主な陽イオン種が異なるのではないかと考えられる。一般の地下水においては、K\(^{+}\)が低濃度で標準的な場合が多いが、No2では6月のみで高くなっており、肥料に含
まれる K⁺が影響した可能性も考えられる。Mg²⁺は、いずれの地点においても5mg/L 前後で推移していた。なお、温泉や水などで検出される Li⁺は、今回の調査では全く検出されなかった。
(4) 鹽基
下水やし尿、およびそれら処理水には、Cl⁻が高濃度に含まれており、Cl⁻は地下水の人为汚染の指標とされる。しかししながら、いずれの地点の全試料においても Cl⁻濃度は低く、し尿等による地下水への影響は全く認められなかった（図 7-8）。
一方、もう一つの地下水の人为的汚染を示す有力な指標である NO₃⁻は、No.1において、2サンプルを除く試料から50mg/L (NO₃⁻N として11mg/N/L) 以上を大幅に超過して検出された。NO₃⁻として100mg/L を超過する場合も複数回あり、明らかにNo.1の地下水のNO₃⁻濃度は極端に高い。また、No.2では、No.1において極端に低下した日時（6月 24日、10月 29日）において、NO₃⁻濃度が逆にパルス的に極端に増加して100mg/L を大幅に超過した。地下水の流動と関係していると考えられる。これに対して、No.3とNo.4は、低い濃度で推移しており、NO₃⁻についてはNo.1とNo.2の地点と全く異なる結果を示した。
SO₄²⁻は、3-6月にかけて30mg/L 前後で検出される場合も認められたが、7月以降は減少し、低濃度を保持している。なお、F⁻、NO₃⁻およびPO₄³⁻は、全調査期間を通していずれの地点からも検出されなかった。
4. 考察
いずれの地点においても調査期間を通して、pH の上昇は認められず、Ca²⁺濃度も日本の一般的地下水の濃度範囲内であり、石灰散布の地下水への影響は全く認められない。土壌における中和効果や緩衝作用によってほぼ pH は安定に保持されていると考えられる。しかしながら、有機物の混入が懸念される情報として、No.2とNo.3でTOCが高濃度に検出されている。有機物の起源は不明であるが、家畜起源とそれ以外の腐植土壌からの溶出が考えられる。設置した観測井は浅く、地上と地下水脈の表層部分の地下水を採集しているため、表土に含まれる有機物が溶出して流入する可能性は高い。土壌が観測井に混入したことによる潮度の上昇も観測されている。また、採水時には試料の臭いを確認しており、地下試料からは無臭または土壌臭以外の特有の臭気は確認されていない。したがって、現在の時点では埋め戻し起源の腐敗分解物が混入したとは考え難い。
4地点のうちのNo.2からのみ、3-5月にかけて平均1.8mg/LのNH₄⁺が検出された。ところが、No.2においてもそれ以降は急激に減少し、他の地点と同様に全く検出されていない。

図 7. 観測井 No.1, No.2の水質変化。
水質調査において、NH₄⁺の硝化過程の中間的生成物質である NO₂⁻の検出が悪影響される項目であった。しかしながら、いずれの地点においても調査期間を通じて、全試料から NO₂⁻は検出されなかった。調査地点において、NH₄⁺の土壌および地下水への溶解的な負荷は認められない。一方、NO₃⁻は、No.1とNo.2の地点において高濃度に検出された。NH₄⁺や NO₂⁻が検出されず、NO₃⁻が検出されていることから、土壌や地下水には家畜を埋却する以前から恒常的に NO₃⁻がストックされている状況にあったのではないかと推察される。種類別の調査によって、川南湿原では、口蹄疫が発生する以前 (1995-2004年) から 26-80 mg/L で応急の無機態窒素が連続的に検出されたことが報告されている。

川南地区の観測井における地下水の水質調査において、2011年3月から2012年1月の期間に得られたデータを総合的にみると、口蹄疫発生にもとない家畜埋却による地下水への影響は認められなかった。本調査は今後も継続する予定であり、蓄積されている地下水水位と流動の情報と水質データを連動させ、川南地区における地下水の水質予測モデルの構築へと発展させたいと考えている。

5. 既設井戸の水質調査

家畜等の埋却処分が実施され、埋却地周辺地域の地下水等への影響が懸念されるため、埋却地周辺井戸等の水質調査を宮崎県と関係市町村が協力して行っている。水質調査は、家畜埋却地を中心に地形や地下水の流れなどを考慮して、個人が所有する既設井戸など県全体で293地点を巡視し、定期的なモニタリングを行っている。調査は4回/年を基本として実施されており、検査項目は有機物（TOC）、pH、臭気など水道水の検査に準じて13項目について行われ、平成22年度は対象地点で延べ1,100回の調査を実施している。

また、平成23年8月に宮崎県、川南町、宮崎大学により構成される「埋却地環境対策連絡会議」が設置され、処分した家畜の埋却地における環境への影響等について、専門的見地から総合的な検討を行う体制が整えられている。

平成22年度は、西都・児湯地域の湧水と地下水において埋却地の影響と考えられる臭気などが確認されている。これについては、当該の2箇所で詳細な調査を行い、TOCや一般細菌数等が高値で検出されたため、さらにモニタリング調査を継続している。なお、現段階においては、この湧水と地下水の周辺井戸には異常がないことを確認しており、井戸所有者および周辺住民に対して状況説明と水の利用についての注意喚起を行うとともに、臭気等の変化については、速やかに行政機関に連絡するよう協力依頼を行っている。
埋没家畜からの環境汚染物質発生の室内カラム試験

1. 目的
実験用ラットを模擬家畜としてカラムに充填し、異なる埋没条件や降雨条件を設定して、浸出液で埋没処分された家畜から発生する環境汚染物質発生ポテンシャル量を明らかにすることを目的とする。さらに、埋没方法の違いによる汚染物質発生量の変化についても実験的に検証している。実験開始約2ヶ月間の結果より得られた知見について報告する（関戸2011）。

2. 実験方法
カラムの概略図を図9に示す。カラムは直径9cm、高さ50cmの透明アクリルパイプで作成した。上部からシャワー状に蒸留水を降下させ、下部から三角フラスコにより採水した。また、発生ガスを捕集するためにガスバックを取り付けた。

宮崎県作成の口蹄疫家畜処理マニュアルに基づいて試料充填条件を考慮し、表1に示す実験条件を設定した。家畜の模擬試料として、動物実験でエチルアルコールにより実験させたラットの死体を用いた。ラット下部にはガラスピーズを約3cm充填し、固定物の流出を防いだ。ラット上部の土壤は宮崎大学構内の約1m下の土壤を採取して用いた。また、ガラスピーズ、ラット、土壤の上部にそれぞれ消石灰を約3g敷きつめた。

カラムAは、日本の中間平均降雨量の0.5倍の降雨量を、カラムB、Dは0.25倍を2週間分カラムに降らせた。カラムCは降水なしとした。各試料充填後（これを0日目とする）、14日後に所定量の降水を行った。以降、2週間ごとに降水を行い、その2日後に浸出液を採取し、浸出液量、pH、CODMn、アンモニアN（インドフェノール法）、T-Nを測定した。なお、各条件のカラムは2本として実験を行った。

3. 実験結果
採水した浸出液の水量、COD、アンモニア性窒素を図10-12に示す。なお、各データは2つの同条件カラムの平均値として示した。試料充填直後、ラットの体液とされる液体が下部のようと流れまった。このため、充填後6日目にこの流出水を採水した。図10に累積浸出量の推移を示すが、いずれのカラムからも6日目の浸出液が約150mL発生していた。カラムAからは降水量100-150mLが流出し、降水量である210mLよりも少なく、他のカラムからの浸出液量は5-40mLとさらに少ない結果となった。これは、降水量の水が土壤に保水されたためで、今後保水量以上の水分が浸透することにより流出水量は増加すると思われる。カラムBとカラムDを比べると、1回目の降水量の浸出量に約30mLの差が生じた。これはカラムDのほうがすぐに水分が保水されたためと思われる。おやすくを入れることで初期浸出液の発生を遅らせることができる可能性があるということが分かった。

pHはいずれのカラムからの浸出水も6.5-7.6とはほぼ中性であり、降水条件による大きな差は見られなかった。
図11にCODMnの推移を示す。降水初期の6日目および以降の浸出水の浸透液が浸透した浸透液中の濃度は20,000-40,000ppmであり、海外での口蹄疫による家畜埋没処分地からの浸出液中のCOD濃度測定事例（RSE 2002）と同様に非常に高濃度のCOD成分を含む浸出液が発生した。カラムAは、22日目のCODMn濃度が38,000ppmとなり、その後降水と共に濃度が減少していた。これは、降水によるカラム内部のCOD成分の洗い出し効果による希釈のために、濃度が減少したと思われる。
カラムB、Dは降水後の浸出液量が少なかったため、全ての試料を測定できなかったが、50日目の濃度はそれぞれ55,000ppmに到達した。
ppm，50,000 ppm と初期流出水よりも高濃度であった。これ
は降水時水がほとんどラフにまで到達しているかった
ため、わずかな量の高濃度の体液が浸出できてしまったと考えられる。
図 12 に浸出液中アンモニア性窒素濃度を示す。初期濃度
はいずれの条件も 7,000–10,000 ppm であった。その後カラム
A は COD と異なり横ばいで推移した。この原因は不明であ
るが、MacArthur ら (2008) の報告でも家畜埋却地からの浸
出液中アンモニア性窒素の濃度が COD に比べて低下の速度
が遅いことが示されており、今後も推移を観察する必要があ
る。カラム B, D は COD 成分と同様に濃度が上昇し、ラッ
ット体液の微量な流出が原因と考えられる。

4. まとめ
本報告では実験ラムの約 2 ヵ月間の結果のみの報告であ
るが、家畜埋却の初期には高負荷の有機汚染物質を含む浸出
液が発生する可能性を示唆した。アンモニア性窒素は、家畜
尿（約 5,000 ppm）よりも高濃度の浸出液が発生しているこ
とから、埋却処理後の土壌に対する窒素負荷に注意する必
要がある。おそらくは添加液、初期流出液の水量がやや
少なくなったり、今後は中長期のおおぐみ添加に問題を
発揮して実験を行うことにより、埋却方
法と環境負荷物質発生量との関係や埋却地内部の有機物分解
速度、物質収支等を明らかにすることが今後の課題である。

環境モニタリングの現状と今後の課題
これまでのモニタリングの結果、埋却地の近傍において、
埋却地が水環境に重大な影響を及ぼしていると判断される状
況は発生していない。しかし、埋却地の環境については、埋
却前の数値が不明であるにかかわらず、流路が浸出液に含まれる生産変動
等を推計するには分析期間が短いことから、現時点での水質
の分析結果が埋却地の影響であるかどうかについての正確な
知見が得られていない。家畜を埋却した影響が、いつどの地
点にどのように出るのかを予測するのは難しいのが現状であ
る。今後の分析結果、もしくは埋却以前の分析結果と併せて、
長期間の分析結果を検討する必要がある。
今後は、宮崎県、鹿児島県など関係機関と協力して環境モニ
タリングを長期に継続し、現地かつ時系列的な地下水環境
の把握を行い、さらに、地下水のモニタリング結果を分析し
て、家畜埋却地からの浸出水の特性を明らかにし、将来的な
汚染拡大の有無、浄化対策の検討を行うための環境影響評価
システムを構築することを目標としている。平成 25 年度に
は、家畜伝染病予防法に定められた埋却地の発掘禁止期間（3
年間）が終了し、利用可能段階に入るので、地下水の環境モ
ニタリングを基礎とした情報提供や技術開発がより重要とな
ると考えられる。

参考文献
中野康文・秋吉康弘・福田仁根・小山田正幸 (2004) 天然記念物渥
関戸知雄・土手 祐・森田哲夫・福田仁根・鈴木祥広 (2011) 模擬
カラム実験による家畜埋却処分地からの初期浸出液性状に関する
研究 第 22 回農業物資源循環学会研究発表会講演論文集 423–424
竹下伸一・鈴木剛二 (2010) 高分解能衛星画像の NDVI 指数を用いた
湿原地表面の状態変化検出方法.農業農村工学会論文集 267: 27–34