下総台地西部における地形の発達*

杉原 重夫**

下総台地の西部を構成する地形を、とくに関東ローム層の層序に注目して区分・対比し、台地の地形発達を明らかにした。

(1)関東ローム層をのせる地形面は、上位から下総台面、下総下位面、千葉第1段丘、千葉第2段丘に分けられる。

(2)下総上位面は海岸平野、下総下位面は海岸段丘又は氾濫原平野、千葉第1段丘、千葉第2段丘は海岸段丘である。

(3)下総上位面、下総下位面の分布状態から、下末吉海岸の海が後退に転じた直後の古東京湾中部における古地理を明らかにすることができた。古東京湾の海が南（東京湾方向）と北東（鹿島灘方向）に分化した時期は、少なくとも下末吉ローム層中の Ph—1 砂石堆積以前である。

(4)周辺諸台地との対比をおこなった結果、今まで下末吉面と武蔵野面の2段に区分されていた地形面、S1・S2・Mの3面に分けられるべきことが明らかになった。このうち台地の主面として広く分布するのは、S1・S2面で、これまでの武蔵野面（M面）は、ごく狭い地域にしか分布しない。

I まえがき

関東地方の地形面は近年 tephrachronology の方法にもとづいて区分、編年され、その成果は、関東ローム層の起源と性状一で総括された1。これによると、関東平野に広く発達する永積台地の主面は、関東ローム層の層序と対応して、下末吉面に属するものと武蔵野面に属するものとの2つに大きく区分され、関東平野東部において広大な面積を占める下総台地の代表的な面は下末吉面に対比されている。しかし地形面の性質を根本の研究が進んでいたかったし、地形の層序についての詳しい調査が進んでいなかったので、地形面の識別や、他地域との対比について多くの問題があった2。最近、関東西部地域で下末吉ローム層中に介在する軽石層が追跡されて、軽石の給源火山や層序関係が明らかにされると、下末吉ローム層に関する知識は著しく増加した。その結果、下末吉面とそれ以降の地形面の形成過程はかなり正確に把握できるようになった。

本稿で研究の対象とする下総台地の西部地域は、一般に関東ローム層の発達の悪い、利根川下流部の諸台地のなかでは、下末吉ローム層とこれより新期のローム層が比較的厚く堆積しているところである。したがって、tephra と地形面の関係の研究には好適なフィールドである。著者は、下末吉台地で確認された軽石層をこの地域で追跡し、その結果と関東ローム層に関する従来の知識に基づいて、既に行われた地形面区分や対比を再検討し、次いで、台地の地形発達史を明らかにしようと試みた。調査にあたっては、地形面と面を構成する堆積物との関係を重視して露頭観察を頻繁におこない、このうち約 360 地点

* 本稿は1964年度明治大学文学部卒業論文にその後の調査結果を加えたもので、その要旨は、日本地理学会1966年度春季大会および日本第四紀学会1969年度総会で発表した。
** 明治大学大学院博士課程
1) 関東ローム研究グループ（1965）：関東ロームーその起源と性状ー、築地書房。
2) 従来の研究では関東平野中央部における下末吉面と武蔵野面の区別が困難であった、貝塚寛平（1958）：関東平野の地形発達史。地理誌、31、59〜86、またこの論文で下末吉ローム層を中心に詳細な研究の必要性を示唆している。
について柱状図を作成した。また、露頭の高度や地
形面の比高の測定にあたっては、ニコンEー6型レ
ベルとハンドレベルを併用した。なお、利根川以北
の常陸台地の南縁部は、今回の研究に関係が深いの
で、調査地域の一部に含めた。

II 下末吉ローン層の層序と対比

(1) 下総台地の下末吉ローン層
下総台地に分布する関東ローン層は、関東ローン
研究グループ (1956) によって、上位から、立川ローン
層、武蔵野ローン層、下末吉ローン層の各部層

第1図 下総台地西部における地形面の分布

1. 下総上位面、2. 下総下位面、3. 千葉段丘、4. 主な露頭観察地点。
Mb: 鳥越、Mk: 上塔原、Mr: 守谷、Mt: 松戸、Nd: 須丘、Ng: 浅山、Nr: 城田、Ns: 常志野原、Ow: 大和田、Rg: 亀
ケ崎、Sz: 志津、Sa: 楽町、Sk: 佐倉、Sr: 白井、Ss: 酒々井、Tsd: 津田沼、Us: 白井、Ych: 八幡、Yk: 四街道。
3) 関東ローン研究グループ (1956): 関東ローンの諸問題、地質雑、62、302~316。
に区分された。このうち最も下位の下末吉ローム層は、
常総粘土層（中村・福田1953）⑥，常総層（小島19
62）⑦，松戸粘土（中川1960，1964）⑧ともよばれ，
褐色，黄灰色，紫灰色，灰白色等のさまざまな色調
を呈する火山灰起源の粘土またはシルトである。厚さは0.7〜5.0m，上限は縦に大きなクラックの発達
する暗褐色のいわゆるチョコレートローム7ととなっ
て武蔵野規模層と接し，その位置は東京軽石層の
下10〜30cmのところにあたる。下末吉ローム層の
全層序は，後述の下総上位面で観察できる。

(2) 軽石層の対比と分布

小林（1965，1967）⑨の御河第1軽石層（Pm-1）
の関東地方における跡を契機として，下末吉ローム
層に有する軽石層に関する関心が高まり，皆
川（1968）⑩，町田（1969）⑪等によって相模野，横
浜地域の下末吉ローム層の層序が明らかにされた。現
在，下末吉ローム層の模式地（横浜市鶴見区相模
ツーパー公園）で下末吉ローム層中に確認された軽石
層は，上位から順にくるようかん（KuP），Pm-1，
親子（OyP，OyP'), 三色アイス（SIP）と通称されて
いる。下総台地西部に近い県立松戸高校南西200m
の露頭（Loc. 120）では，東京軽石層の下に4枚の軽
石層が認められ，それぞれの軽石層は，下記のよう
に，岩相，層位関係，礫物組成等から模式地の軽石
層のおのおのにはほぼ確実に対比される（第2図）。

くるようかん軽石層（KuP）⑫：東京湾沿いの地点

4) 中村一夫・福田 理（1953）：常総台地の地形及び地質（案内）。地理編，65，432。
5) 小島伸夫（1962）：手賀沼周辺から大鰐白里町にかけての成田層群の堆積状態と地史について（成田層群
の研究第5報）。地理編，69，172〜183。
6) 中川久夫（1960）：地層室層および敷土層。地質編，66，305〜310。
7) 同（1964）：東京湾沿岸地域の地形発達史。海洋地質，3，1〜10。
Paper，48, 367〜391。
9) 皆川栄一（1968）：相模川山間部のローム層と第四紀記史1・第四紀研，7, 101〜108。
10) 町田 洋（1969）：下末吉，武蔵野段丘についての諸問題（案内）。第四紀研，8, 67。
11) 前掲10)では，くるようかん軽石層を三浦半島の小原台軽石層，房総半島の三舟山軽石層に対比している。
栄、渋谷周辺では、チョコレートローム中に痕跡的に発見できる場合がある。

Pm—1軽石層：下総吉台地や武蔵野台地のいわゆるPm—1軽石層は、鉱物組成上風化した黒雲母やジルコン12を含むのが特徴である。この軽石層は、本地域でも下総吉ローム層の一部である。岩相は霧헤によ
てかなり異なり、Loc. 120、松戸市大橋（Loc. 9）、船橋市下見町（Loc. 57）等では、ブロック状に断続した黄色軽石層（厚さ10cm以下）であるが、市川市大町（Loc. 33）、船橋市下飯山滝（Loc. 74）、渋谷市芝崎（Loc. 109）等では、うぐいす色、白色、淡赤灰色粘土となり、ときに成層してかなり厚いこともある。この軽石層は、すべての霧へで常に観察できるとは限らないが、利根川以南の地域において広く分布している。末吉ローム層中のよい鍵層となる。

赤橙色軽石層（RP）：この軽石層の発達のよいLoc. 9では、Pm—1軽石層の約40cm下に位置し、石質岩片を多量に含む粗粒のスコリア質の軽石層（厚さ12cm）である。層面には末吉台地の親子軽石層の層準にはほぼ相当するが、岩相や風化の程度がかなり異なるので、ここでは赤橙色軽石層（RP）と仮称する。この軽石層は、東京湾の一部の地域で認められるだけで、その厚さも5cm以下の場
合が多い。

三色アイス軽石層（SIP）：末吉台地と同様、末吉ローム層下部に特徴的な軽石層である。

Loc. 120では層厚50cm、次の4枚に大きく分けられる。上位から1）淡黄色粘土状の粗粒軽石層（厚さ20cm）、2）灰色粘土質火山灰（厚さ10cm）、3）淡黄色粘土状軽石（厚さ10cm）、4）紫灰色粘土状

12）下総吉台地や武蔵野台地のPm—1軽石層には重鉱物組成上2〜7%のジルコンを含む。下総台地では2〜4%のことが多いが、ほとんど含まない（1%以下）こともある。Loc. 120のPm—1軽石層は2枚
に分かれる。
火山灰（厚さ10cm）である。loc. 122. 千葉市天戸（loc. 98）、柏市亀井（loc. 128）の三色アイス軽石層もこれと同一産状を示すが、ときには全体が白色に洗白化しているところ（印西町山下 loc. 260）、砂を混ぜるところ（八千代市辺田前 loc. 232）、泥炭の薄層を挟むところ（千葉市加賀市町 loc. 260）もある。軽石層は台地西部に広く分布していて、その厚さは、松戸・船橋付近で40〜50cm、千葉市東部で30cm、印西沼以北で20〜30cm である。

下水道路層中のこの上4枚の軽石層は武蔵野、神奈川、東海道、上野東京間各々を形成する東京軽石層ともに、地形面を対比するうえでよい錱層となる。

III 地形面の区分

本地域に分布する地形面を、まず、第3図の高度分布図と20,000分1の空中写真を資料として、面の連続性、配列の順序、開析状態、谷の形成状況から大まかに区分した。次いで野外観察によって各面の分布を確かめ、上位の面から順に、下総上位面、下総下位面、千葉段丘と名付けた。下総上位面は、下総台地の台地面を構成するが、千葉段丘は、主として台地面を刻む谷に分布し、ときに上総下位面と2段に区分できる。この場合上位のものを千葉第1段、下位のものを千葉第2段丘とした。なお、千葉段丘の下位に沖積面があるが、ここでは研究の対象としない。下総上位面、下総下位面および千葉段丘の分布状態は第1図に示した通りである。千葉第1段丘、千葉第2段丘については、千葉東部の都川流域の例を第8図に示した。

IV 各地形面の分布とその形態

下総上位面：下総台地の主体部を構成する最も分布の広い地形面である。東京湾北東岸と利根川の流域に挟まれた地形面で、主要部は、印西沼をたたえる谷によって、四街道から松戸へかけての集落によって区別され、印西沼以北の印西郡印西村、本宿村付近に突き出る部分とに分かれる。このうち、四街道から松戸へかけて分布する地形面は、東京湾水系と利根川水系の分水界をなす部分が高く、そこから東京湾東岸と利根川東岸へ延びやかに低下して下総下位面に至っている。面の高度は、松戸から四街道へかけた25〜30cm、印西沼西面では30cm 前後であるが、印西沼東岸と本宿一千葉線は結ぶ線より東側では南東方向に高度を増し、四街道東方で40cm 前後となる。

地形面は、主として東京湾水系と利根川および印西沼、手賀沼両方から発し、伸びる樹枝状の谷をなすことが特徴である。すなわち印西沼周辺の佐倉、酒々井、成田付近の台地面はかなり開析されているが、台地中央部には、習志野原、下総津原とよばれる未開析の平坦地がなお広く残存している。

下総下位面：下総上位面より1段低い下総下位面は、東京湾沿岸部と利根川下流部流域とに分かれて分布する。

このうち、市川から千葉至る台地南西部の下総下位面は、下総上位面の前面の幅2〜4km の地域に、東京湾北東岸にほど平行に分布する。下総下位面と背後の下総上位面とは、比高5m 前後のゆるやかな斜面、あるいは傾斜の変換線によって分かれた。このため、両地形面の厳密な境界は不明瞭な場合が多い。市川、船橋付近では面の一般的高度は

13）この4枚を皆川（1968）前掲 9）が識別した1〜4部層にそのまま対比するのは問題である。
14）さらに東の下総台地が九十九里低地へ陥没部分の高度は60〜80cm である。
15）台地の開析度については次の論文が詳しい。沼田（1956）：下総台地西部の場合の地質。明治大学文学部卒業論文（未発表）。
16）現地調査の際、市川市国分町、船橋市幸見町、習志野市藤崎一大和田間で比高3 〜4m のゆるやかな崖線が認められた。
<table>
<thead>
<tr>
<th>福田 (1953) (1)</th>
<th>中川 (1960) (2)</th>
<th>成瀬 (1961) (3)</th>
<th>小島 (1962) (4)</th>
<th>ことの報文</th>
</tr>
</thead>
<tbody>
<tr>
<td>関東火山灰層</td>
<td>立川火山灰</td>
<td>立川ローム</td>
<td>立川・武蔵野ローム</td>
<td>立川ローム層</td>
</tr>
<tr>
<td>窪戸野火山灰</td>
<td>武蔵野ローム</td>
<td>市原砂礫</td>
<td>段丘堆積物</td>
<td>武蔵野ローム層</td>
</tr>
<tr>
<td>千葉段丘砂礫</td>
<td>千葉段丘砂礫</td>
<td>江戸原段丘段丘</td>
<td>千葉段丘</td>
<td></td>
</tr>
<tr>
<td>常総粘土層</td>
<td>千葉段丘</td>
<td>常総層</td>
<td>下木合</td>
<td></td>
</tr>
<tr>
<td>鬼ヶ崎砂礫</td>
<td>木下層</td>
<td>鬼ヶ崎層</td>
<td>木下層</td>
<td>鬼ヶ崎層</td>
</tr>
</tbody>
</table>

(1) は脚注 4 による。 (2) は脚注 6 による。 (3) は脚注 22 による。 (4) は脚注 5 による。

18〜22m，全体として東京湾方面に徐々に低下し，台地末端の東京湾に臨む部分では15m前後となる。しかし，検見川，幡茅，黒砂付近の台地末端部では，台地上に砂丘をのせるため，局的に海側が高くなっている。

利根川下流部における標式的な下緑下位は，北は，江戸川が利根川から分流する関宿付近から，南は，柏市北部および手賀沼周辺に至る。上記 2 河川間の南東に拡がる細長い三角形の地形に分布する。さらにこの面は，利根川に沿ってより下緑帯に断片的に認められる一方，手賀沼・印籠沼を連ねる地帯にも幅 2〜4km にわたって分布する。また台地を刻む谷が比較的大きい場合には，これに沿って下緑上位面内にも分布する。この下緑下位面とその南に続く下緑上位面とは，第 2 図で示したように，流山南方（国鉄常磐線が台地上にのる付近）から手賀沼の谷と平行して東西に伸びる緩斜面によって塗される。これに対応するものは，印籠沼上流の神崎川の南側で，比高 3〜5m の明瞭な段丘面として現れで観察できる。印籠沼東方の佐倉，酒々井，成田付近では，下緑下位面と上緑面との比高は 5m 前後である。下緑面は全体としては北西方面に緩やかに傾いていて，たとえば利根川右岸の印籠郡栄町付近で 23m，我孫子市および柏市北部で 20m，利根運河をこえた野田市付近で 15m 前後である。また，印籠沼と神崎川に沿う下緑下位面も同傾向を示し，東部の佐倉市付近で 25m，西部の印籠郡白井町で 20m である。なお利根川沿いの地帯における下緑下位面と沖積面との比高は，下緑部で大きく，上緑部で小さい。

千葉段丘：下緑上位面，下緑下位面を刻む谷の緑辺には，これに沿って，さらに下位の地形面が認められる。このうち，関東ローム層の堆積している小段丘群を，千葉段丘と総称する。千葉段丘は，古くから指摘されているように，谷の南岸ないし東岸に分布する傾向が著しく（18），かつ，多くの場合，段丘面は谷の中央部に向かって緩やかに傾く一連の斜面をなす。しかし，台地東部においては，比較的大きな谷に沿って発達する千葉段丘は，上下 2 基，すなわち千葉第 1 段丘と千葉第 2 段丘に区分できる。

千葉市街地から東西に伸びる都川の谷では，この 2 段の地形面が標式的に発達する。都川沿いに分布する千葉第 1 段丘の高度は，上流部（千葉市川井付近）で30m，下流部（千葉市都町付近）では15m 以上

17）印籠郡栄町付近で約 20m，我孫子市布在町で約 17m，利根運河以北で 10m 前後である。つまり利根川は先行性流路の性格をとっているのである。

18）東末根七（1929）：河岸段丘の非対称的配置とその成因，地理評，5 〜 6。

貝塚賀平（1949）：関東低地の河岸段丘について（摘要），地理評，122，123〜124，段丘の非対称性について述べている。

--- 708 ---
下にまで低下し、台地面とは5m程度の段丘面によって区別される。千葉第2段丘は千葉第1段丘よりも約6m下に分布し、下部層では沖積面（高度約5m）下に没入する。印旛沼へ流入する鹿島川の南北性の谷に分布する千葉段丘も2段に分かれるが、これは、佐倉市南方で沖積面下に没している。

V 各地形面の構成層

この地域の地形に関係の深い上部洪積層の層序の比較を第1表に示す。ここでは、おのおのの地形面と面を構成する堆積物ならびにそれをおおう関東ローム層の層序との関係について論ずる。

下総台地面：本地域では、関東ローム層下に砂・シルトを主体とする海成洪積層が広く分布し、成田層群とよばれている。このうち地形面を構成するものは、成田層群の上部を占める狭義の成田層であって、その堆積面をなす上位の地層は、小島（1958、1959）30の木下層、中川（1960、1961）31の木下層、成瀬（1964）32の鄰岐崎層である。これら地層は砂鉱をもなう灰色の中粒～粗粒の

19）成田層群そのものの堆積機構や層序関係については未だ統一した見解に達していない、関東第四紀研究グループ（1969）：関東第四紀と海水準変動。地調研研話、15、173～200、最近の研究成果の総括がある。
20）小島尚夫（1958）：木下地方の地質構造について（成田層群の研究第1報）。地質雑、64、165～171。
小島尚夫（1959）：印旛沼周辺の成田層群について（成田層群の研究第3報）。地質雑、65、595～605。
21）中川久夫（1961）：本邦太平洋沿岸地方における海水準静的変化と第四紀層年。東北大地震、54。
下総台地の柱状図（下総下位面）

霞の地点 2, 24, 27, 52：市川市, 57, 59：船橋市, 84：習志野市, 87, 88, 95, 105, 111：千葉市, 109：流山市, 180：柏市, 197：我孫子町, 169：沼南町, 162：白井町, 227：佐倉市, 軽石層の記号は第2図, 柱状図の記号は第4図と同じ。

砂層, または砂質シルトと細砂の互層から成り, 上限付近では, ときにクロスラミナが発達する。塩層沼周辺の木下層には, Mactra sulcataaria, Cycymeris visitata などの暖流系の上流海流を示す貝化石を化石床状に含む。本稿では, 下木台ローム層に整合的におおわれる海成層を単に成田層とよぶ。

下総上位面では, 成田層の砂と漸移して, 厚さ 1.5〜6m の下末吉ローム層が堆積している。下末吉ローム層は, 基底に三色アイス軽石層をともない, その上に, 赤橙色。Pm-1, くりよかんの各軽石層をさしはさむ。Pm-1 軽石層と三色アイス軽石層の間の層準は砂を多く含み, ときには, この部分がクロスラミナを示す明瞭な砂層となっている。（たとえば, 松戸市尾敷 Loc. 24 など）この砂層は, 一般に南東方向に厚くなる傾向があるが, 三色アイス軽石層とは整合的であって, その厚さも 2m を越すことは稀である。Pm-1 軽石層より上部の下末吉ローム層は, 下部とは対照的に粘土質で, その上限のチョコレートロームには著しいクラックが発達する23)。下末吉ローム層は, 武蔵野ローム層に不整合24)におのおられる。

下総下位面：この地形面については, 東京湾沿岸

23) 下総上位面では, このためくりょうかん軽石層以上の層準が不明瞭な場合が多い。また, この部分が崩壊性のロームとなっていることもある。なお Pm-1 軽石層以上の層準は地形面との関係から, その大部分が風化であると考えている。

24) 関東ローム層の各層間に関みられる斜交関係を普通不整合とよんでいる。ここに埋没丘陵をもたないことも多いことから堆積の時間的間隔を示すものとされた。小林（1965）はその時間の長さは, 極く短いものと考えている。

Kobayashi, K. (1965): Late Quaternary Chronology of Japan. 地球科学, 79. 1〜17. 筆者はむしろ斜交関係が示す各ローム層間の著しい侵蝕期（侵蝕基準面の変化）に重要性を認めたい。
部と利根川下流部の2地区に分けて述べる。

（東京湾沿岸部）この地域では、成田層上にそれとは不整合関係にない成田層の砂より粗い、礫混りの砂層が発達する。この砂層を市川砂層と新称した（模式地：船橋市夏見町 Loc. 57）。その厚さは1m前後、成田層が海沿いの塩褐色中粒砂であるのに対し、非常によく円磨されたpebble大の礫（大部分がチャート類）を混える粗粒の砂で、クロスタミナが著しい。厚さが30cm以下の場合は、粒径2〜5cm大の円礫層から成ることが多い。

市川砂層上には、厚さ3m以下の下末吉ローム層が整合的に堆積する。市川層を覆う下末吉ローム層は、多くの場合赤土状を呈し、市川砂層との境界付近にPm-1礫石層を、さらに上の層準にくるようかん軽石層を挟む。国鉄総線篠津田沼、西千葉駅間より海側の地帯（台地面の高度15〜20m）では、下末吉ローム層の発達は概して悪く、くりょうかん軽石層以上の下末吉ローム層を発見できるところ（千葉市黒砂 Loc. 111）もあるが、下末吉ローム層のほとんど認められないところで（千葉市幕張 Loc. 87）が多い。

（利根川下流部流域）本地域の下緒下位面もまた、成田層を不整合におおう砂層から成る。この砂層は、村上・福田（1953）が命名し、その後小島（1958, 1959）が報告した竜ヶ崎砂層である。竜ヶ崎層の模式面は、茨城県竜ヶ崎市付近（たえば竜ヶ崎市下河原 Loc. 299）にあるとされが、下緒台地では、利根川、手賀沼の台地に好発層がある。（我孫子市周辺 Loc. 185, 192, 197, 220等）ここでは、クロスタミナの著しく発達した灰色又は黄褐色の中粒ないし粗粒砂で、pebble大の礫（層厚：チャート、安山岩礫等）を混え、ときに多量の軽石を含む。成田層との不整合面上には、成田層から由来したシルトの礁層を見ることもある。竜ヶ崎層は印旛沼沿いの地帯や利根運河以北でも、これに近いfaciesを示すが、柏市南部や流山市周辺のように、シルトや粘土を多く含むところもある（流山市芝崎 Loc. 109）。本地域内の竜ヶ崎砂層の厚さは、柏市周辺や印旛沼沿いの地帯では大体2m前後であるが、野田市東部から布佐町に至る利根川沿いの地帯では、これより厚く3.0〜4.5m、最大6mに達する。なお、竜ヶ崎砂層の基底は、利根川沿いの地帯では芽吹大橋付近、江戸川沿いの地帯では利根運河との合流点付近で沖積面下になってい。露頭ではその厚さが測定できない。一方、利根川を越えた常陸台地には、竜ヶ崎砂層は広く分布しており、その堆積面は幅散面とよばれる（周地隆男・常総団研グループ 1965）の。その報告によると、台地を構成する竜ヶ崎砂層は、西方および北方では成田層と不整合関係にあるが、台地東部（江戸川東方）では成田層と指交関係にあり、その厚さも1〜2mである

25) faciesが成田層のそれと似ている場合、不整合関係を識別しにくい。
26) 周地隆男・常総団研グループ（1965）：霞ヶ浦南方洪積台地の地質（要旨）、地質雑。71。
層に不整合におおわれる。すなわち、地形面と tephras の関係から、竜ヶ崎砂層の堆積面と市川砂層の堆積面はほぼ同時期であるといえる。

千葉段丘：都川治いの千葉第1段丘では、成田層と不整合関係に砂礫層が発達し、千葉段丘砂礫（中川 1960, 関東ローム研究グループ 1965）あるいは市原砂礫（成瀬 1961）とよばれている。ここでは、関東ローム研究グループに従い千葉段丘砂礫とよぶ（模式地：千葉市郡町 Loc. 257）。その厚さは2m前後、クロッラミナを示す帯紫褐色の粗粒砂を主体とし、粘土とシルトから成る直径4〜7cmの礫を含む。ときに上部が砂混りの粘土となっており、その粘土は火山性質を全く認めない。千葉段丘砂礫とそれをおおむ武蔵野ローム層とは整合が著しい関係にあるが、立川ローム層とは不整合関係にある。

千葉第2段丘は沖積面との比高が小いため、面を構成する堆積物を観察できる露頭はほとんどないが、ハンドオーガを使用したポーリング（28）では、立川方面の不整合面と比高差が示される。

竜ヶ崎砂層には、常緑粘土とよばれる厚さ0.5〜2.0mの粘土層が整合的に重なる。この粘土は、高師小僧などの植物生痕が著しく、いわゆる氾濫原土（flood loam）状の堆積相を呈す。しかし粘土化した火山灰や軽石を多量に混ぜ、ときに Pm-1 軽石層の延長と思われる軽石層を竜ヶ崎砂層との境界付近にともなう（我孫子東方 Loc. 197等）ことから、下末吉ローム層の Pm-1 軽石層以上は、地質の関係で対照できるものと考えられる。この粘土は東京湾方面の下末吉ローム層と同様、武蔵野ローム層と同様。}

第7図 常陸台地の柱状図
露頭の地点：276, 274：取手, 273：竜ヶ崎市, 288：牛久町, 281, 299：竜ヶ崎市, 311：新利根村, 305：江戸崎, 軽石層の記号は第2図, 柱状図の記号は第4図と同じ。

第8図 千葉市東方都川流域の千葉段丘
1：台地, 2：千葉第1段丘, 3：千葉第2段丘, 4：谷底および塩浜低地, 5：砂州および砂浜, 6：砂丘, 7：潮汐平野, 地形分類は主に加曾利貝塚調査報告（1968）による。

27）上限がチョコレート色をしたクラック帯となっているが、この部分は、これらの粘土砂を母材として土壤化が進んだもので下末吉ローム層ではない。
28）千葉市大宮町から多部田町に至る都川南岸において10数地点のポーリングをおこなかった。
第9図 下総台地の柱状図（千葉第1段丘）
1. B-1: 市川市, K-1, 257, K-2: 千葉市, B-1はハンドオーガーによるポーリング（地点は第1図）
K-1, K-2は加賀利貝塚調査報告（1968）による。
川ローム層に対比できる厚さ1〜3m のローム層の存在を確かめた。立川ローム層下の地形面構成層は
貧弱で, pebble 大の礫が成田層の砂との境界付近に僅かに点在するだけである。
市川市柏井付近の千葉段丘では, 東京軟石層をと
もなう厚さ5m のローム層を認めめた（B-1）。また,
印塚沼・手賀沼の谷から北に伸びる谷に分布する
千葉段丘とでは厚さ1〜5m のローム層をのせる。
これらのローム層はすべて, 立川ローム層あるいは
武蔵野ローム層に対比できる。

VI 地形面の形成過程と地盤運動についての考察

以上第Ⅲ, IV章に述べた事実にもとづいて地形面
の形式過程を考察する。
下総下位面: 下総上位面は, 成田層の堆積面とし
て形成されたもので, 地形面の性質は隆起した海底
面すなわち海路平野である。面を構成する成田層は
内湾性の淡海に堆積したものであるが, これをおお
う下末吉ローム層のうち, Pm-1 軽石層以下の下
位層も砂層や泥炭の薄層を挟んでおり, 水中堆積
相を呈する。この地域では, 成田層を堆積させた海
が, 三色アイス軽石層堆積を伴う湖沼性の水域とし
て残っていたことが予想できる。なお成田層の堆積

面は, 本来は水平に近かったものと考えられ
るが, その形状をこまかく見れば完全に平坦ではな
く, 手賀沼・印塚沼周辺部などの比較的大きな谷に
沿う地域では, 三色アイス軽石層の発達帯が低下
していたり, 成田層が局部的に削り取られたところ
に, 下末吉ローム層が堆積している場合がある。おそ
らく下末吉ローム層の堆積以前に, 現在の谷筋に
関係のある凹地や落窪がすでに存在していたものと思
われる。

下総下位面: この地形面は, 東京湾地区では市川
砂層の堆積面として, 利根川地区では竜ヶ崎砂層の
堆積面として形成されたものである。市川砂層は,
その facies などから海浜性の砂礫であると考えら
れ, 地形面もその分布状態からみて明らかに海成の
段丘面である。竜ヶ崎砂層については, 安山岩系の
礫を含んでいること, その facies などから, 古鬼
川川系統の延長河川によって運ばれ, 河口に近い場
所に堆積した氾濫原堆積物であると考えられ, 地形
面も, 水成原または洪水原野（flood plain）とよば
のにふさわしいものである。この下総下位面の汀線
高度は, 東京湾地区では15m 前後（ローム層の厚さ
を加算すると22m 前後）に想定でき, 利根川地区で
は, 竜ヶ崎砂層が成田層と整合関係にある江戸崎東
部の台地面の高度30m 前後に考えられる。下総下位
面では, 多くの地点で Pm-1 軽石層以上の層準の
風成の下末吉ローム層90を発見したが, 東京湾地区

29) tephra の堆積環境については, 未だ不明瞭な点が多い。一般に赤土状を呈する場合は風成, 黄灰色, 黄
白色の粘土の場合は水成とされる。しかし地下水の影響で粘土化することもあって, 個々の露頭における
検討を必要とする。
の海寄りの部分には、下末吉ローム層をほとんどのせないところもある。また利根川地区では、河成の氾濫原堆積物である常緑粘土中に Pm-1 砂石層が介在する。このことから、下緑下位面の陸化は、Pm-1 砂石層以上の層準の下末吉ローム層が堆積する過程において、徐々におこなわれたものと考えられる。

千葉段丘：千葉第1段丘と千葉第2段丘とは、台地を刻む谷の縁辺部に、河岸段丘として分布する。このうち千葉第1段丘は、千葉段丘砂礫の堆積面である。千葉段丘砂礫は、その分布状態と facies などから、かつてそれらの谷を流れていた小河川のもたらした堆積物であると推定できる。これには、火山灰起源の一次的堆積物は全く含まれず、そのうえ面をおおう武蔵野ローム層の下限はすべてこの砂礫層の直上にある。このことから千葉第1段丘の形成時代は、下末吉ローム層と武蔵野ローム層の堆積期の間際にあたるものと考えられる。千葉第2段丘は立川ローム層にのみおわれる。この地形面に関する資料は少ないが、千葉第1段丘とともに、侵食基準面が現在の沖積面よりも低下していた時期に形成されたものである。

次に、地形面の形態や分布状態から地盤運動を推察する。従来から指摘されているように、下緑下位面（成田層群の堆積面）は、関東造盆地運動の影響で一般に南東に高く北西に低い30）。貝塚（1957）31）によれば関東平野西部にあった造盆地運動の中心は、成田層の堆積後古河地区と東京湾北部の 2 つに分化した。下緑下位面の台地面上の、北西から南東方向に伸びる微隆起帯は、この 2 つの造盆地運動区の境界をなすもので、波状の地形とよばれた（貝塚、1961，1967）32）。四街道付近から松戸北部に至る。
この微隆起帯の主要部分は、東京湾水系と利根川水系の分水界となっている。さらにこれと平行して佐倉市南方から下志津に至る高まりと、印旛沼東方の酒々井村東方から手賀沼東部に至る高まりがあって、これらの高まりに挟まれた比較的低い帯に印旛沼、手賀沼をたたえる主な水系があり、その主流は波状の起伏には至り傾斜している。下流系の分布は、これらの微隆起帯の位置とほとんど一致し、また東京湾岸の下流系の分布する帯地は、この分水界をなす微隆起帯が、東京湾造盆地運動地域に移化するところに当っていると考える。東京湾沿いの下流系の分布は、下流系上より急勾配で東京湾方向に傾斜しているが、それには、海岸段丘面としての本来の傾きのほかに、東京湾造盆地運動の影響が加わっているのかもしれない31)。利根川下流系分布による下流系は、現在の利根川おび鬼怒川の流量とは逆に北ないし北西方向に傾下している。第11図に示した竜ヶ崎砂層の基底面も地形面と同じ傾斜方向を示し、它是竜ヶ崎砂層のfaciesの変化やクロスラミナの方向性から推定される竜ヶ崎砂層堆積当時の河床面の傾きの方向とは明らかに異なる。このような地形面の変位は古河地区造盆地運動の影響によるところが大きいと考える。

なお、印旛沼の谷は酒々井〜手賀沼東部を経て高まりに対し、先行性の進行をとっている。事実、印旛沼沿いの下流系の傾斜は、この高まりを横切る部分で僅かながら増加する33)。また、この高まりの北西方向への延長上にあたる地帯（我孫子市東部）では、竜ヶ崎砂層の基底面の高度も周辺部より高い。

第12図は、北西〜南東方向の微隆起帯とほぼ直交する水準路線の水準点の変位量を示したものであるが、変位の状態は隆起帯や造盆地の運動の方向とよく対応しており、地形面や竜ヶ崎砂層の基底面を変化させた地盤運動と同じ傾向の運動が、現在もなお進行しつつあることをうかがいう。

VII 地形の発達

古東京湾の東部にあたる本地域では、下末吉海進の際、広範囲にわたって成田層が堆積した。下末吉海進が海進に転じ34)、隆化が進むに従って成田層の堆積面を下流系上に形成された。その上には、隆化の過程で起こった地盤運動によって、現在の東京湾東岸と利根川流域の傾斜のほぼ中間に北西〜南東方向の高まりができ、古東京湾の海はこれを境に南

33) 下流系上位の高度は成田〜佐倉間に25〜28m、その周辺部で20m程度。
34) 貝塚英夫・成瀬 洋（1958）: 東京府ローム層と東京平野の第四紀地史. 科学, 28, 128〜134.
第2表 南関東におけるいわゆる下末吉面、武蔵野面の対比

<table>
<thead>
<tr>
<th>地形面の記号</th>
<th>相模野・下末吉台地(1)</th>
<th>武蔵野台地(2)</th>
<th>下総台地</th>
<th>常陸台地(3)</th>
</tr>
</thead>
<tbody>
<tr>
<td>M</td>
<td>三崎面(本郷砂屑堆積面)</td>
<td>千葉第1段丘(面)</td>
<td>小野川段丘(面)</td>
<td></td>
</tr>
<tr>
<td>S1</td>
<td>小原台面(下末吉層の堆積面)</td>
<td>下総下位塚(市川砂礫層の堆積面)</td>
<td>稲敷面(電ケ崎砂礫層の堆積面)</td>
<td></td>
</tr>
<tr>
<td>S2</td>
<td>下末吉台面(下末吉層の堆積面)</td>
<td>下総上位塚(成田層の堆積面)</td>
<td>常陸台面(成田層の堆積面)</td>
<td></td>
</tr>
</tbody>
</table>

(1) 町田(脚注10, 37)による。
(2) 小林(脚注38), 杉原(脚注39)による。なお武蔵野台地では本郷面の下位に下総台地がある。
(3) 稲敷面については常陸国研グループ(脚注26)による。常陸面は取手から水戸瀬に至る台地面、小野川段丘は、小野川南岸に分布する段丘。

(東京湾方向)と北東（鹿島灘方向）に分かれて退いていった。それとともに東京湾方面では新しい海底面が出現し、利根川台地では古鬼怒川系の延長河川の侵食が始まった。その後、海面の比較的安定した時期に、東京湾沿いには規模は不等な海水浴場が作られ、他方竜崎開發が堆積して下総下位面を形成した。古東京灣が2つに分化した43)43)43)43)43)時代は、下末吉ローム層中層に介在するPm=1軽石層の堆積前である。下総下位面形成後、河川は大局的には北西-南東方向の高まりを分水界として発達し、やがて千葉第1段丘、千葉第2段丘が形成された。これが海面の低下期にあたることは、現在、第1，第2段丘ともに下流部において、その一部が沖積面下に浸っていることから推定される。後水期の海進によって、これらの河谷は溺れ谷となり、沖積面が形成されるに至った。なお手築沼・印築沼の成因やこれをたえる谷の形態については古くから興味をもたれてきた43)。下総下位面の分布状態から、かつてこの方向に河道が消滅したことは明らかである。印築沼や手築沼は、当時の名残川が台地を刻み込み、その結果できた谷がさらに沈水し、一方、利根川との合流点に近い部分に生じた逆デルタによって崩壊されて形成されたものである。

VIII 周辺諸台地の地形面の対比と、それによる
とならざる2・3の問題

南関東に分布する地形面群のうち、今まで下末吉面あるいは武蔵野面と認められてきた地形面を、各地において再検討した。再検討にあたっては、関東台階層、とくに下末吉ローム層に介在する軽石層を鍵層とし、その結果、下末吉面、武蔵野面は第2表のように対比でき、上位からS1面、S2面、M面とよぶ。S1面は三色アイス軽石層以上の下末吉ローム層、すなわち、下末吉ローム層の全層をのせる。S2面はPm=1軽石層以上の下末吉ローム層を、すなわち、下末吉ローム層のほぼ上半部の層をのせる。M面は下末吉ローム層を全く欠き、武蔵野ローム層のみによっておおわれる。

S1面の標式地は下末吉台地の下末吉段丘（高度30～50m）にある。ここでは海成の下末吉層を整合的に三色アイス軽石層がおお、三色アイス軽石層の延長は、武蔵野台地の淀橋面において上部東京層の直上に発見できる。そのほか、所沢台や千種台の下末吉ローム層下部に認められる。三色アイス軽石層は下総台地の西部でも成田層の堆積面をおおっているが、その東部や常陸台地ではほとんど認めること
ができていない。これらの地域は、三色アイス軽石の分布範囲外にあったと思われる。

相模野－横浜地域のS2面の分布状態は、町田（1969）によって明らかにされた。三浦半島の小原台（高度75－85m）構成の小原台砂礫層は、小原台軽石層を下部層に伴在する下末吉ローム層におよわる。武蔵野台地では、小林（1968）によって豊島台の一部でPm－1軽石層が発見され、Pm－1軽石層以上の下末吉ローム層をのせる面は成層をよばれるに至った。筆者（1970）はPm－1軽石層が豊島台全域に広く分布していることを認め、従来一括して武蔵野面に対比されていた地形面のうち、地形的に上位の豊島台が成層面であることを見出した。常陸台地ではPm－1軽石層は発見されなかったが、下総台地西部で確立された地形面とtephraとの関係から、この領域に広く分布する亜窪ケ崎砂層の堆積面は確実にS1面に対比できる。M面の分布は武蔵野台地では本郷台や多摩川沿いの武蔵野台地に限られ、その他の地域でも台地の縁辺部に局部的に認められるだけである。すなわち、南関東の諸台地で広い面積を占めるのは、S1面とS2面で、従来の定義による武蔵野面（ここでのM面）は、現実にはごく狭い範囲にしか分布しない。

ここで地形面の対比や地形面の形成条件について触れることにしよう。

（1）S1面を構成する下末吉層、上部東京層、成田層などの一連の海成層は、下末吉海進期に古東京湾内に堆積したものである。これら海成層の堆積面をおお下末吉ローム層、下末吉台地や武蔵野台地の一部では全層が風成であるのに対し、下総台地や常陸台地では、少なくともPm－1軽石層より下部の層準は水成である。これは関東平野周縁部のS1面が海成面や三角洲面の面であるのに対し、中央部のS1面が相対的に低位にある海底面であるという下末吉ローム層堆積当時の環境の違いのほかに、関東盆地中央部では造盆地運動の影響で、S1面の離水の時期が遅れたことも関係しているよう、S1面が完全に陸化したことは、S2面の形成に先だって海退による。

町田（1969）は相模野－横浜地域のS2面に海進をもたえた谷塚の堆積物があると報告している。しかし武蔵野台地や下総台地のS2面では著しい沈水期をもたえた堆積物は発見できず、むしろ海退期におけるS2海進期あるいは海面の停滞期に形成された公算が強い。

（3）S1面からM面にかけては著しい海退が推察できる。M面は多くの場合河岸段丘として分布し、下流部で沖積面下に埋没する。

IX あとかき

関東地方の下末吉面と武蔵野面は、全域的にわたって再検討の必要があると考えられる。今後、本稿で明らかにされたtephraと地形面の関係を基準として、各地の地形面を再検討するつもりである。また第四紀の気候変化や海水準変動と、おのおのの地形面の形成条件との関係について研究したい。

この論文を草するに際して、明治大学文学部在学以来、終始御指導いただいた岡山俊雄教授をはじめ、明治大学地理学研究室の諸先生方に厚く御礼を申し上げます。また多数の文献や資料を貸与され、あたたかい助言をいただきました熊澤直教、神奈川県下の第四紀層についての見解を示

37) 町田 洋（1969）: 下末吉段丘とそれ以降の諸海成段丘の第四紀地形形成史における意義（論旨・地理層, 42, 450.
40) 武蔵野台地の様式地は武蔵野台地の吉祥寺付近の台地面と考えられ、その代表的ヌプスは、通常、多摩川沿いの武蔵野段丘にあるとされている。ここでは、武蔵野ローム層が武蔵野段丘に直接かかるものと考えられている。
GEOMORPHOLOGICAL DEVELOPMENTS OF THE WESTERN SHIMŌSA UPLAND IN CHIBA PREFECTURE, JAPAN

Shigeo SUGIHARA*

This study was made on the geomorphological developments of the western part of the Shimōsa Upland in the north of Chiba Prefecture. The results are summarized as follows:

(1) Landform surfaces of this region can be divided into Shimōsa Upper Terraces, Shimōsa Lower Terraces, Chiba 1st Terraces, Chiba 2nd Terraces and alluvial surfaces. Landform surfaces except alluvial surfaces are covered with volcanic ash layers (so-called "Kanto Loam").

(2) Shimōsa Upper Terraces are coastal plains formed by marine Pleistocene strata mainly comprising sand and silt. In the Shimōsa Lower Terraces, coastal districts of Tōkyō Bay are coastal terraces formed by pebbles and sands, while the downstream basins of the Tone River are flood plains consisting of river-made sand. The Chiba 1st Terraces and Chiba 2nd Terraces are river terraces formed by river-made pebbles.

(3) Shimōsa Upper Terraces are 25 to 35 meters above sea level. Their principal parts extend from northwest to southeast and form the waterhead between the Tōkyō Bay drainage system and the Tone River drainage system. The Shimōsa Lower Terraces are 10 to 25 meters above sea level. They are distributed along the northeast coast of Tōkyō Bay at the edges of the Shimōsa Upper Terraces by making gentle inclination toward Tōkyō Bay. They can be traced further to the north along both Tone and Kinu Rivers, and also are developed in the region between Lake Inba and Lake Taga. The Chiba 1st Terraces and chiba 2nd Terraces are distributed only partially along the valleys carving the terraces. From the aforementioned status of geomorphological surface distribution, it was clarified how the sea piling up sea layers to form the Shimōsa Upper Terraces had retreated.

(4) With Kanto Loam as a key bed, a comparison was made with various terraces surrounding it by the so-called tephrachronological method. As a result, it was clarified that the landform surfaces which have hitherto been divided into two terraces, namely Shimosuyoshi Terraces and Musashino Terraces, should be divided into three terraces, namely S1, S2, and M. Among them, those widely distributed as the principal terraces of the Upland are S1 and S2 Terraces, and the existent Musashino Terraces are distributed only in an extremely limited area.

Geographical Review of Japan 43-12 1970

* Graduate School of Meiji Univ.