Interpretation of Thermal Response Test in Ungrouted U-tube Ground Heat Exchangers

Hikari Fujiwara*, Yoshitomo Komantawa*, Masato Yamaguchi*, and Naokata Chou**

Abstract

In Japan, the annular space between heat exchange pipes and well walls are commonly grouted in ground heat exchangers (GHEs) to avoid the formation collapse and to secure the contact between the heat exchange pipes and the formation. As is frequently applied in northern European countries, however, GHEs can be completed without grouting in case the formation rock is rigid and groundwater level is located near the ground surface. To investigate the applicability of GHEs without grouting in Japan, the evaluation of heat exchange capacity of such GHEs is quite important for the design of optimum GHE length and hence to minimize the initial cost of geothermal heat pump systems.

In this research, an ungrouted GHE was drilled in a hard formation of granite in Fukuoka City, Japan and series of thermal response tests (TRTs) were carried out under various heat loads. On the basis of the chronological changes of heat medium temperatures and vertical temperature profiles measured using an optical fiber thermometer, the thermal resistivity of the GHE and the vertical distribution of thermal conductivity were estimated using graphical and analytical interpretation methods. The results of interpretation indicated the improved (reduced) thermal resistance of the ungrouted GHEs in comparison with grouted GHEs, due to the effect of natural convection of groundwater between the U-tube and the well wall. The interpreted vertical distribution of thermal conductivity showed a good agreement with the results of graphical interpretation, the local geological information and the laboratory measurements of core samples, indicating the reliability of the interpretation method of vertical temperature profiles measured by optical fiber thermometers in ungrouted GHEs.

Keywords: ground heat exchanger, thermal response test, thermal resistance, optical thermometer, thermal conductivity

1. 緒言

地中熱利用ヒートポンプ（以下、GeoHPと略す）システムでは地中熱交換井を用いて地盤との熱交換を行なう。垂直型地中熱交換井は掘削コストが高額であるが、坑井設置に必要な用地が少ないため、日本国内におけるGeoHPシステムの多くは垂直型地中熱交換井を利用している。そして、これら垂直型地中熱交換井では、設置が容易で熱媒体漏洩の可能性が低いU字管型が最も広
く使われている。U字管型地中熱交換井では、坑井壁削
後にU字管を坑底まで挿入し、熱交換器として利用する。
日本国内では、深部地盤は未然結果で坑壁が自立しな
いことが多いが、U字管型地中熱交換井において坑壁
とU字管の間を砂・珪砂・セメントなどで充填すること
が一般的である。また、地下水位が深い場合などにおい
ては、地下水面より下部においてU字管と地層間との熱
交換を行うためにも坑井内の充填は重要である。

日本国内では、坑井浸水地は砂積層や層状地に位置す
ることが多いが、地表においては基盤岩が地表面近くに
存在することがある。このような計画に設置する地中熱
交換井では、奥深部までにケーシングを設置して以降
を掘削のままとし、熱交換器が非充填仕上げにすることが
あり、坑井仕上げ費用の低減が可能となる。また、未開
掘が終了するまでケーシングなどで保護されている既存水井
戸およびU字管などの地中熱交換器を設置するだけ、で
きても低費用で非充填仕上げの熱交換井を用いることか
ら、さらに、非充填熱交換井ではU字管中の熱媒体と地層温
度に差が生じるために坑井水が地下水に自然対流が
生じる場合には、これにより、非充填熱交換井と比較
して熱交換量が増増されるため（藤井ほか、2002）、
熱交換井の長さを短縮できる可能性がある。したがって、
非充填仕上げが可能な状況において、掘削後の熱交換
井の効率を正確に予測して熱交換井の設計の参考とす
ることは、GeOHPシステムの採算性向上に寄して重要で
考えられる。

非充填仕上げ熱交換井の研究としては、2003年
の藤井ほか（2003）は非充填熱交換井で実施
したサーマルラボダンス試験（Thermal Response Test；以
下、TRT）と併せて、TRTを3種類の解析結果および有効差
分式に基づく数値解析と適用し、それぞれの解析結果の
妥当性を評価した。また、GeOHPおよびHelmstör
f（2003）の解析手法は、非充填熱交換井において、地下水流が熱交換井を通過する影響を多孔質
型およびフランチャ型の有限差分法モデルを用いて評価
した。さらに、藤井ほか（2003）は非充填熱交換井に
いて、地層深部と周辺部の影響がある場合を想定し、
TRTでの坑井内の加熱による熟サイクル効果が解析結
果に与える影響について検討した。

国内では、藤井ほか（2002）による非充填熱交換井のし
度計測予測手法開発に関する研究があげられる。この
研究では、円筒型熱源関数（Ingersoll et al., 1954）に基
づく地層熱交換井の温度計測予測モデル（Dearman and
Kavanagh, 1990）において、U字管と坑壁の間隔（以下、
アニュラス部」と呼ぶ）が地下水中で満たされている場合を
想定して、従来の程度計測予測モデルにアニュラス部の
自然対流を組み込み、非充填熱交換井の挙動予測を可能
とし。そして、秋田市で設置された深度100mの非充
填熱交換井において、熱負荷を変えて行なったTRT結果
とヒストリーマッピングによりモデルの妥当性を検証
した。また、非充填熱交換井を含む地中熱交換井の熱乾
取に関しては、Ogawa et al. (2006) による坑井仕上げの
異なる6種類の熱交換井におけるTRT結果に基づいて熟
抵抗を推定した研究がある。この研究で著者らはTRTよ
って得られた温度データに基づいて算出された熟抵抗をポ
リエチレンパイプや充填材などの熱物性値より得られた
熟抵抗と比較し、両者に良好な相関があることを示した。

以上の研究により、非充填熱交換井の熟交換特性や伝
熱挙動は明らかとなりつつある。しかしながら、地中熱
交換井の性能に重要な影響を与える要素である熟抵抗を
フィルード試験によって検討した例は限られており、ま
た熟交換井の違いによる自然対流の強さの変化が熟抵抗
に与える影響を検討した例は見受けられないのである。ま
た、非充填熱交換井でのTRTにおいて、光ファイバー温
度計を用いた地温測定により詳細な地中熱物性分布
の推定が可能ならば、非充填熱交換井を用いての
既存の水井戸さぼを用いた詳細な地盤情報の収集が
可能となるが、このような研究が行われた例はない。

そこで、本研究では兵庫県甲府市に位置する九州大学伊
都キャンパス内に設置した深度50mの非充填U字管型地
熱交換井において熱負荷を3段階に変化させたTRTを実
施し、熱媒体温度の測定およびバイアク温度計を用
いたU字管内の温度分布のモニタリングを行う。解析では、
熱媒体温度の経時変化を用いて平均地層熟伝導率および
熟抵抗を算出する。次に、理論終了後のU字管内の温度
分布を用いて、地層の熱伝導率分布をFujii et al. (2009)の
解析手法により推定する。Fujii et al. (2009)の複数層モ
デルを用いた地層熱物性推定手法は充填された熱交換井に
おいては妥当性が実証されているが、非充填熱交換井への
適用例はない。そこで、TRT解析によって得られた熟
伝導率分布を地質情報およびサーキュラ分析データと比較する
ことにより、複数層モデルを用いた地層熱物性推定手法の
非充填熱交換井への適用性を検討する。

2. 非充填U字管型地中熱交換井のモデルリング

本研究における非充填U字管型地中熱交換井のモデリ
ングでは、さらにTRTと熱媒体循環時の熱媒体
温度の経時変化に基づいて、作図法（藤井、2006）を用
いて地層の熱伝導率と熱交換井の熟抵抗を算出する。従い
て、円筒型熱源関数に基づく複数層モデル（Fujii et al.,
2009）を用いて熱交換井の温度変動を予測する。複数層
モデルにおける熱交換井内の熟伝達は、熱媒体とU字管
内壁間の対流熱伝達、U字管を通じた熱伝導、アニュ
ラス部における対流熱伝達を考慮して評価する。なお、
非常温熱交換器ではアニュラス部において地下水の自然
対流が生じる場合があるが、この自然対流の影響を考慮
したアニュラス部における見かけ熱伝導率は TRT 解析
により求めた熱抵抗に基づいて推定する。以下に非常温 U
字型地中熱交換器のモデルリング方法を説明する。

2-1 熱伝導による熱伝導率、熱抵抗の推定

循環時の熱媒体温度を用いる作図法において、地中熱
交換器を一定とした場合の熱交換器での熱媒体温度 T（入
口温度と出口温度の平均値）の経時変化はケルビンの象
源理論を用いて式 (1) で表される。

\[T - T_i = \frac{q}{2\pi \lambda_s} \left(-\ln \frac{r}{2\sqrt{T_i T}} - 0.2519 \right) \] \((1) \)

式 (1) を用いて、熱交換器一定条件の下で時間とともに
変化する変数は時間の 1/2 であり、時間に依存しない
項を定数 b にまとめて、式 (1) は式 (2) の形で表
される。

\[T - T_i = m \log(t) + b \] \((2) \)

式 (2) から明らかのように、定数 m は \(\log(t) \) を x 軸、
熱媒体温度 T を y 軸としたプロットにおける直線の傾
きより決定される。すなわち、地層熱伝導率 \(\lambda_s \) は式 (3)
を用いて求めることができる。

\[\lambda_s = 0.183 \text{d/m} \] \((3) \)

一方、熱交換器における熱抵抗は、グラウト材や U 字
管における熱伝導、熱交換器内の熱媒体と熱交換器との
間の対流熱伝達などにより生じる。熱抵抗 R [mK/W] は、
熱交換器単位長さ当たりの熱交換量を 1 [W/m] とした場
合に、R [K] の熱抵抗による温度低下があることを表し、
熱抵抗を考慮すると式 (1) は以下の如く書きかえられ
る。

\[T - T_i = \frac{q}{2\pi \lambda_s} \left(-\ln \frac{r}{2\sqrt{T_i T}} - 0.2519 \right) + qR \] \((4) \)

本研究における TRT 解析では、熱抵抗は作図法を用
いて熱伝導率 \(\lambda_s \) を求めた後、式 (4) を用いて決定する。

2-2 円筒型熱源関数を用いた U字型熱交換器のモデ
リング

熱交換器の温度挙動は、円筒型熱源関数 (Ingersoll et
al., 1954) に基づく複数層モデル (Fujii et al., 2009) を用
いて計算する。複数層モデルでは地層の不均質性を再現
するために地中熱交換器および地層を深度方向に分割し、
それぞれの層について地中熱交換器と地層の熱交換およ
び地層内での熱伝達を計算する。また、U字型熱交換器
は U字管を束縛して設置する場合を想定して 1 本の管と
して扱い、式 (5) および (6) を用いて U字管の内径 (\(r_1 \))
および外径 (\(r_2 \)) をそれぞれ等価内径 (\(r_{eq} \)) と等価外径 (\(r_{eq} \)) に換
算し、これらを熱伝達計算に用いる。

\[r_{eq} = \sqrt{r_1 r_2} \] \((5) \)

\[r_{eq} = \sqrt{r_1 r_2} \] \((6) \)

地層内の熱伝達は熱伝導のみとし、円筒型熱源関数 G
を用いて地層温度を推定する。円筒型熱源関数 G は時間
および熱源からの距離の関数であり、本研究では熱交換
器の坑壁を節点として、同点における温度 \(T_w \) を式 (7) お
および式 (8) により関係を用いて地層側および熱交換器側
からそれぞれ求め、両者の差が十分に小さくなるまで熱
交換量を変化させて反復計算を行うことにより、各深
度での熱交換量を推定する。

\[T_w = T_i - \frac{q G}{\lambda_s} \] \((7) \)

\[T_w = T_{in} + qR_i \] \((8) \)

ただし、\(T_w \) は熱媒体の熱交換器入口温度と出口温度の
平均値に相当し、\(R_i \) は坑壁と熱媒体間の総熱抵抗を表す。
また、2-1 に示した作図法によって求められた熱抵抗は
\(R_i \) と等しい。\(R_i \) は管壁から熱媒体への対流熱伝達に
する熱抵抗 (\(R_s \))、U字管の通過熱抵抗 (\(R_{eq} \)) およびアニュ
ラス部における対流熱伝達に対する熱抵抗 (\(R_{eq} \)) の和とし
て、式 (9) で表される。

\[R_i = R_s + R_{eq} + R_{eq} \] \((9) \)

\(R_i \) および \(R_{eq} \) は、それぞれ式 (10) および (11) により表
される (\(R_{eq} \) は後述)。

\[R_s = \frac{\ln (r_1 / r_2)}{2 \pi \lambda_s} \] \((10) \)

\[R_{eq} = \frac{1}{2 \pi h_{eq}} \] \((11) \)

\(\lambda_s \) は U字管の熱伝導率、\(h_s \) は U字管内における対流
熱伝達率を表し、\(h_s \) はメルツト数 (Nu) を用いて式 (12) で
表される。

\[h_s = Nu = \frac{\lambda_s}{2 R_i} \] \((12) \)

本研究において実施する TRT では U字管内での熱媒体
の流れは乱流となるため、管内流動におけるメルツト数
は式 (13) に示す Dittus and Boelter の実験式 (Holman,1976)
を用いて計算する。
$$Nu = 0.023R_e^{0.7}Pr^0.4\ (排熱形式のTRTではn=0.4) \tag{13}$$

アニュラス部での対流熱伝達における熱抵抗（$$R_k$$）は既知の$$R_o$$、$$R_s$$、$$R_{as}$$に基づき、式（9）を用いて求める。アニュラス部における自然対流を考慮した見かけ熱伝導率を$$\lambda_e$$とすると、$$R_k$$は式（14）で表される。本研究では、以上の関係式を用いてTRT結果よりアニュラス部における冷下水の見かけ熱伝導率$$\lambda_e$$を求める。

$$R_k = \frac{\ln(T_o/T_s)}{2\alpha} \tag{14}$$

2-3) 非線形回帰法を用いた熱伝導率の推定

本研究では光学ファイバー温度計より得られた坑井内の温度プロファイルおよび熱媒体温度に基づき、Fujii et al. (2009) による非線形回帰に基づく方法により地層の熱伝導率分布を推定する。複数層モデル（Fujii et al., 2009）を用いて求めた熱交換井口における熱媒体温度および地中熱交換器の外壁温度と、フィールド観測において得られたそれぞれの実測値の差益2乗和の合計である評価関数$$F$$を式（15）で定義する。

$$F = a \sum_{i=1}^{N} \left(T_{o}(a_i) - T_{m}(a_i) \right)^2 + (1 - a) \sum_{i=1}^{N} \left(T_{s}(a_i) - T_{m}(a_i) \right)^2 \tag{15}$$

$$a$$は重み付けのための定数であり、評価関数の収束挙動を観察しながら最適値を設定する。nstepは計算ステップ数、nlayerは複数層モデルにおいて分割した層の数、nreadは地中熱交換器の外壁温度の測定値と実測値の比較関数を表す。本研究では非線形回帰法としてポリトープ法（Gill et al., 1981）を用い、各層の地層熱伝導率をパラメータとした四重計算を行い、評価関数$$F$$を最小化することにより地層熱伝導率の分布を推定する。

3) TRTの概要

本章では福岡市に設置した非常設用熱交換井において実施したTRTの実施条件・結果などについて述べる。

3-1) 熱交換井に関する情報

本研究では福岡市西区に設置する九州大学佐賀キャンパス内に掘削された地中熱交換井（以下、試験井とする）において、熱負荷を変えて3回のTRTを実施した。試験井の坑井仕上げをFig.1に示す。試験井の深度は30.0 mであり、深度26.0 m付近までは崩壊しやすい地盤のため、掘削後に内径200 mmの鋼管を設置し、セメントを注入、セメントを注入した。26.0 m以深の地盤は硬質の花崗岩であるため、掘削仕上げとした。地中熱交換器は高密度ポリエチレン管を1組設置し、シングルU字管型熱交換井とした。U字管の内径・外径はそれぞれ25 mm・32 mm、鉄熱エネルギーはブロープ式遠心熱伝導率計により、0.366 W/(m·K) と測定された。U字管の挿入深度は47.7 mであるが、これは課題の状況が悪くU字管が達成度までしか到達できなかったためである。また、試験井における地下水位は18.0 mに位置することが、18.0 m以深のU字管は空気中に位置する。18.0 m以深のU字管と空気との熱交換は本研究の対象外であるため、18.0 m以深のU字管には断熱材を管周囲に十分に巻き付け、この区間での熱損失を最小化した。以上より、本試験井の熱交換に寄与するU字管長さは深度18.0 mから47.7 mまでの29.7 mとみなした。

次に、試験井におけるカッティングおよび深度10 m毎に掘削したコアの観察によって作成された地質柱状図と光学ファイバー温度計により測定された初期地盤温度をFig.2に示す。地表から深度10.5 m付近までは盛土を含む粘土砂質土で覆われており、深度25.0 m付近までは風化花崗岩である。25.0 m以深の地層は硬質の花崗岩岩により構成されているが、深度40.0 m以深の花崗岩は岩層を含んでいる。なお、本試験井は丘陵部に位置しており、地盤における動水勾配が大きく、深度40.0 m以深の花崗岩には地下水浸透が存在する可能性がある。

試験井における地中温度は、ステンレス製被覆付き光ファイバー温度センサー（日立製作所製）をとりU字管
の内部に設置し、光ファイバー温度計（光頭および受信器を内蔵）を用いて測定した。光ファイバー温度計は最
小測定間隔1m、データの最小サンプリング間隔1分の
日立電線製製FTR-70を用いた。

3-（2）試験条件

試験井におけるTRTは熱負荷を変えて計3回実施した。
各TRTの実施期間、熱媒体の循環流量、熱負荷をTable 1
に示す。各試験において熱媒体循環時間は50時間とし
循環終了後は光ファイバー温度計により温度回復を5日
間程度測定した。TRT-1における熱負荷は通常のTRTに
おいて適用される熱負荷の範囲内であるが、TRT-2および
TRT-3における熱負荷は通常より大きい100W/m以上
として、熱交換量の増加が熱抵抗に与える影響を観察し
た。各TRTにおける熱媒体の循環流量はおよそ20L/min
であり、熱媒体温度を30℃とした場合での循環における
熱媒体のレイノルズ数は20,000以上となるため、U字管
内における熱媒体の流れ様式は常に乱流であった。

各TRTの循環終了時における光ファイバー温度計によ
るU字管内の温度分布の測定結果をFig. 3に示す。図図
より、深度18.0mに位置する地下水系以浅における熱媒
体の温度変化はほとんど見られないことから、地水水
面以浅のU字管の断熱は良好であり、この区間での熱損失
は無視できると考えられる。そこで、本研究では試験井
の坑口付近に設置したTRT試験装置の入口および出口に
て測定した熱媒体温度を深度18.0mにおける行き管、戻
り管内の熱媒体温度と等しいと見なしして解析に用いるこ
ととした。

4. TRTの結果と解析

本章では試験井におけるTRTに作図法を用いた解析を
適用することにより、地層の平均熱伝導率および熱抵抗
を算出するとともに、光ファイバー温度計を用いて得ら

Fig.2 Vertical temperature profile and geological column of test well.

Table 1 Conditions of thermal response tests.

<table>
<thead>
<tr>
<th>TRT No.</th>
<th>Flow Rate (L/min)</th>
<th>Heat Load (kW)</th>
<th>Heat Load (W/m)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>19.8</td>
<td>1.89</td>
<td>63.6</td>
</tr>
<tr>
<td>2</td>
<td>19.9</td>
<td>3.50</td>
<td>118.1</td>
</tr>
<tr>
<td>3</td>
<td>19.9</td>
<td>4.99</td>
<td>168.2</td>
</tr>
</tbody>
</table>

Fig.3 Temperature profiles in U-tubes at end of each TRT.
れた坑井内温度プロファイルに基づいて試験井周辺地盤の熱伝導率分布を推定する。そして、これらの結果に基づいて非応力時管を用いた熱交換特性、および同タイプの熱交換井における光ファイバー温度計を用いた詳細な地層熱伝導率推定の可能性について検討する。

4-1 作用法による解釈

TRT-1からTRT-3における熟媒体循環中の熱媒体平均温度の経時変化をx軸に時間（対数）、y軸に熱媒体温度としてFig.4(a)から(c)に示す。いずれの図においても循環開始0.1日以後は強い直線部が観察され、これらの部分の傾きmから求めた地層熱伝導率は2.40〜2.46 W/(m·K)とすべての場合において良好に一致した。次に、推定された熱伝導率を式(4)に代入して得られた熱抵抗

![Fig.4 Graphical interpretation of each TRT ((a)TRT-1, (b) TRT-2, (c)TRT-3).](image)

![Fig.5 Thermal resistance of each TRT.](image)

<table>
<thead>
<tr>
<th>No.</th>
<th>TRT</th>
<th>Thermal cond. (W/(m·K))</th>
<th>Thermal resist. (mK/W)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>TRT1</td>
<td>63.6</td>
<td>0.100</td>
</tr>
<tr>
<td>2</td>
<td>TRT2</td>
<td>118.1</td>
<td>0.092</td>
</tr>
<tr>
<td>3</td>
<td>TRT3</td>
<td>168.2</td>
<td>0.089</td>
</tr>
</tbody>
</table>

を全TRTについてFig.5に示す。なお、同図中においてTRT 名の後のカッコ内の数値は各試験における熱交換器単位長さあたり熱負荷（＝平均熱負荷/熱交換器の有効

---36---
Fig.6 Temperature profile after circulation of heat medium in TRT-3.

長さ）を示す。式(4)より明らかなように熱抵抗の推定値は時間により増減するが、Fig.5に示されるように各TRTにおいて熱抵抗は約0.2日経過以降ではほぼ一定となった。Table 2に作図法より得られた熱伝導率（Thermal cond. (Graphical)と表記）および0.2日経過以降の熱抵抗（Thermal resist. と表記）の平均値を示す。熱負荷の増加に伴いアニュラス部での地下水の自然対流が活発化するため、熱負荷の大きいTRTほど熟抵抗が減少する傾向が見られた。

4-(2) 光ファイバーテーマーによる温度測定結果

光ファイバーテーマーによって測定したTRT-3における循環前、循環終了1日後および2日後でのU字管内の温度をFig.6に示す。循環前および循環終了後はU字管壁を通過する熱量は小さいため熱媒体温度とU字管外壁温度Tmはほぼ等しいと推定される。そこで、本研究では循環前および循環終了後において光ファイバーテーマーによる測定したU字管内温度と熟交換器外壁温度Tmは等しいとして解析に用いることとする。TRT-3では熟負荷が168.2 W/mときわめて大きいため、Fig.3に示されるように循環終了時の温度は50℃付近まで上昇したが、Fig.6に示されるように循環終了1日後には地層温度は25℃以下まで回復した。ただし、各深度における温度回復速度には差が見られ、深度25 m以上では深度の増加とともに回復速度が増加し、本試験井における地層の見かけ熱伝導率が深度とともに増加している可能性を示している。なお、光ファイバーテーマーは測定点の前後において平均化が行なわれるため、深度方向に急激な温度変化がある場合には測定誤差が大きくなる場合がある。すなわち、Fig.6に示される地下水位の位置での深度18 mから20 m付近ではこの影響により測定された温度の信頼性が乏しいと考えられる。また、測定区間の下端ではセンサー末端の影響により温度測定の信頼性が低下する。そこで、本研究では深度20 mから45 mまでの光ファイバーテーマーにより測定した温度データの解析対象として、この上下区間は解析対象から除外することとした。

4-(3) 地層熱伝導率分布の推定

ここでは第2章にて述べた円筒型熱源開数を用いる複数層モデルによる解析結果を示す。式(15)における温度データの比較回数ntestを2として、循環終了1日後2日後2組の深度を評価回数に導入した。層の定義では深度18 mから48 mを深度方向に1 m間隔で分割し、合計30層とした。ただし、上述のとおり、深度18 mから20 mおよび45 mから48 mまでの光ファイバーテーマーによられる温度は信頼性が低いため式(15)には入力せず、深度20 mから45 mまでの25 mの熱伝導率分布を推定した。計算では時間ステップ長さを30分とし、式(15)の重み付けの定数αは試行錯誤の結果0.1とした。ポリトープ法を用いた非線形回帰計算では、初期値を全層について2.5 W/(m·K)とし、評価回数Fの改善が見られなくなるまで最大2000回の反復計算を行った。

Fig.7(a)から7(c)は各TRTにおける熱媒体の熱交換井出口温度の実測値および計算値の比較を示す。熱媒体温度は熱負荷により上昇することが大きく異なるが、すべてのTRTにおいて実測値と計算値の良好な一致が見られた。次に、Fig.8にTRT-3における循環終了1日後および2日後におけるU字管外壁温度Tmのマッピング図を示す。U字管外壁温度に関して良好な実測値と計算値の一致が見られ、同様な一致がTRT-1,TRT-2においても得られ

Fig.9に複数層モデルによって得られた各TRTにおける深度20 mから45 mまでの熱伝導率分布、および岩石コアの熱伝導率計により測定した深度30 m、40 m、50 mにおける熱伝導率を示す。図を示すように、すべてのTRTにおいて類似した熱伝導率の分布傾向が見られた。Fig.9に示した熱伝導率の平均値をTable 2に（Thermal conductivity (Analytical)と表記）示す。同表が示すように、すべてのTRTにおいて作図法および複数層モデルによる
熱伝導率の平均値に良好な一致が見られた。また、Fig.2に示す地質柱状図における風化花崗岩と花崗岩の区間では熱伝導率の顕著な差が見られ、TRT解析結果と地質柱状図の整合性が認められた。コアサンプルの熱伝導率測定値と複数層モデルによる熱伝導率推定値は深度40mではほぼ一致し、深度30mでは約0.4W/(m・K)の差が見られた。これは、コアは局所的な地層の物性値を示し、各層の平均値を求める複数層モデルによる推定値とは必ずしも結果が一致しないためと考えられる。

4-4 非圧縮仕上げに関する考察

本研究にて実施したTRTでは、総熱抵抗RnをTRT解析から求め、対流熱伝達熱抵抗Rcおよび岩盤体における熱抵抗Rgを井戸仕上げと熱媒体の温度・流速から求めることができる。したがって、試験井のアニュラス部での対流熱伝達における熱抵抗Rcは、各TRTにおいて式(9)より求めることができる。アニュラス部における自然対流を考慮した見かけ熱伝導率λnは上記の方法で求めたRcと式(14)を用いてFig.10に示すように推定された。なお、同図においてx軸は単位熱交換器長さあたりの熱交換量を表す。同図が示すようにλnは熱交換量の増加とともに増加する傾向が見られたが、これは地層と地中熱交換器の温度差の増加による自然対流の流
Fig.9 Comparison of interpreted distribution of thermal conductivities in each TRT and measured thermal conductivities using core samples.

Fig.10 Effective thermal conductivities vs. heat exchange rates in each TRT.

なおの増加に起因するため、以下条件を満たすGeoHPシステムにおいて、非充填仕上げの採用は熱交換井仕上げ管の低減とエネルギー効率改善に大きく貢献すると考えられる。

- 安定した岩盤が地表近くから存在する。
- 地下水位が低い（深いと熱交換井の有効長さが減少する）

5. まとめ
本研究では深度50mの非充填U字管型熱交換井において熱負荷を3段階に変化させてTRTを実施し、熱媒体温度と時間および出力値を変化させたU字管内温度分布特性のモニタリングを行なった。TRT解析では単一の熱媒体温度の経時変化を用いて平均地層熱伝導率および熱抵抗を算出し、さらに、非充填仕上げ熱交換管の良好な熱交換性能が示された。

また、Table 2に示したように試験井におけるTRT-1では熱抵抗0.100 mK/Wと推定され、Okubo et al. (2006)によるTRT解析では、セメント充填したU字管型熱交換井および鋼鉄充填されたダブルU字管型熱交換井の熱抵抗はそれぞれ0.177 mK/W、0.116 mK/Wと推定されている。いずれの熱抵抗もTRT-1における熱抵抗に大いに大きいが、特にU字管仕上げを採用した本試験井とセメント充填したU字管型熱交換井との熱抵抗の差0.077 mK/Wは、地中熱交換量を50 W/mとした場合において熱媒体温度における3.9℃の差につながる。このような熱媒体温度の差は、ヒートポンプに
謝辞
本研究の一部は日本学術振興会科学研究所基盤研究（B）（課題番号19360407）により実施された。

記号の説明

<table>
<thead>
<tr>
<th>符号</th>
<th>詳細</th>
<th>記号</th>
<th>詳細</th>
</tr>
</thead>
<tbody>
<tr>
<td>F</td>
<td>評価関数</td>
<td>K²</td>
<td></td>
</tr>
<tr>
<td>G</td>
<td>円筒型熱源関数</td>
<td>[-]</td>
<td></td>
</tr>
<tr>
<td>h</td>
<td>対流熱伝達率</td>
<td>[W/(m²K)]</td>
<td></td>
</tr>
<tr>
<td>L</td>
<td>地中熱交換器長さ</td>
<td>[m]</td>
<td></td>
</tr>
<tr>
<td>nlayer</td>
<td>地層分割数</td>
<td>[-]</td>
<td></td>
</tr>
<tr>
<td>nstep</td>
<td>総計算ステップ数</td>
<td>[-]</td>
<td></td>
</tr>
<tr>
<td>ntst</td>
<td>計算間数Fにおける外壁温度の比較回数</td>
<td>[-]</td>
<td></td>
</tr>
<tr>
<td>Nu</td>
<td>ヌセルト数</td>
<td>[-]</td>
<td></td>
</tr>
<tr>
<td>Pr</td>
<td>プラントル数</td>
<td>[-]</td>
<td></td>
</tr>
<tr>
<td>q</td>
<td>単位長さあたり地中熱交換量</td>
<td>[W/m]</td>
<td></td>
</tr>
<tr>
<td>r</td>
<td>坑井中心からの半径</td>
<td>[m]</td>
<td></td>
</tr>
<tr>
<td>r_i</td>
<td>U字管内壁の半径</td>
<td>[m]</td>
<td></td>
</tr>
<tr>
<td>r_n</td>
<td>U字管内壁の等価半径</td>
<td>[m]</td>
<td></td>
</tr>
<tr>
<td>r_o</td>
<td>U字管外壁の半径</td>
<td>[m]</td>
<td></td>
</tr>
<tr>
<td>r_e</td>
<td>U字管外壁の等価半径</td>
<td>[m]</td>
<td></td>
</tr>
<tr>
<td>R</td>
<td>熱抵抗</td>
<td>[mK/W]</td>
<td></td>
</tr>
<tr>
<td>R_a</td>
<td>アニュラス部の熱抵抗</td>
<td>[mK/W]</td>
<td></td>
</tr>
<tr>
<td>R_w</td>
<td>管壁から熱媒体への対流熱伝達における熱抵抗</td>
<td>[mK/W]</td>
<td></td>
</tr>
<tr>
<td>Re</td>
<td>レイノルズ数</td>
<td>[-]</td>
<td></td>
</tr>
<tr>
<td>R_p</td>
<td>U字管壁の熱抵抗</td>
<td>[mK/W]</td>
<td></td>
</tr>
<tr>
<td>R_t</td>
<td>総熱抵抗</td>
<td>[mK/W]</td>
<td></td>
</tr>
<tr>
<td>t</td>
<td>時間</td>
<td>[s]</td>
<td></td>
</tr>
<tr>
<td>T</td>
<td>温度</td>
<td>[°C]</td>
<td></td>
</tr>
<tr>
<td>T_m</td>
<td>熱媒体平均温度</td>
<td>[°C]</td>
<td></td>
</tr>
<tr>
<td>T_i</td>
<td>初期地層温度</td>
<td>[°C]</td>
<td></td>
</tr>
<tr>
<td>T_e</td>
<td>熱交換井出口における熱媒体温度</td>
<td>[°C]</td>
<td></td>
</tr>
<tr>
<td>T_o</td>
<td>U字管外壁温度</td>
<td>[°C]</td>
<td></td>
</tr>
<tr>
<td>T_w</td>
<td>抵壁温度</td>
<td>[°C]</td>
<td></td>
</tr>
<tr>
<td>α</td>
<td>重み付け定数</td>
<td>[-]</td>
<td></td>
</tr>
<tr>
<td>α_n</td>
<td>地層の密度温度</td>
<td>[m³/s]</td>
<td></td>
</tr>
<tr>
<td>λ</td>
<td>アニュラス部の観かけ熱伝導率</td>
<td>[W/(m·K)]</td>
<td></td>
</tr>
<tr>
<td>λ_p</td>
<td>U字管の熱伝導率</td>
<td>[W/(m·K)]</td>
<td></td>
</tr>
<tr>
<td>λ_n</td>
<td>地層の熱伝導率</td>
<td>[W/(m·K)]</td>
<td></td>
</tr>
<tr>
<td>λ_w</td>
<td>水の熱伝導率</td>
<td>[W/(m·K)]</td>
<td></td>
</tr>
</tbody>
</table>

引文文献

