Journal of the Geothermal Research Society of Japan
Online ISSN : 1883-5775
Print ISSN : 0388-6735
ISSN-L : 0388-6735
Transient Heat Transfer from a Circular Cylinder with Constant Heat Flux in a Saturated Porous Layer
Application to Groundwater Velocimetry
Shigeo KIMURA
Author information
JOURNAL FREE ACCESS

1990 Volume 12 Issue 1 Pages 79-90

Details
Abstract

Transient heat transfer from a cylindrical object placed in a saturated porous layer, which is simulating a heat-generating probe vertically placed in an aquifer, has been studied both analytically and numerically. When constant heat flux is specified on the eylinder surface, it is shown that the surface temperature rise with time and the elapsed time to reach steady state can determine the effective thermal conductivity of the saturated porous layer, as well as the groundwater velocity running through it. A present study reveals two distinctive regimes existing during the transient process. For small times, the heat transfer is dominated by conduction, while for large times conduction is balanced with convection. Recognizing these characteristics enables us to develop approximate solutions valid for respective regimes. Complete two dimensional solutions are generated numerically in order to demonstrate the accuracy of the approximate solutions. An application to groundwater velocimetry has been suggested.

Content from these authors
© The Geothermal Research Society of Japan
Previous article
feedback
Top