Journal of the Geothermal Research Society of Japan
Online ISSN : 1883-5775
Print ISSN : 0388-6735
ISSN-L : 0388-6735
Information on Geothermal System Obtained by Chemical and Isotopic Characteristics of Soil and Fumarolic Gases from the Doroyu-Kawarage Geothermal Field, Akita, Japan
Itsuro KITAKeisuke NAGAOYuji NAKAMURASachihiro TAGUCHI
Author information
JOURNAL FREE ACCESS

1992 Volume 14 Issue 2 Pages 115-128

Details
Abstract

For soil gases from the Doroyu-Kawarage geothermal field in northern Japan, the concentrations of Rn, H2, CH4, CO2 and rare gases (He and Ne) together with isotopic ratios of CO2 and He (δ 13C of C02 and 3He/4He) were measured. In presently developing geothermal field to the northern part of Doroyu fault, Rn concentrations of soil gases are clearly higher than those to the southern part. On the other hand, the distribution of low δ 13C values (-20∼-24‰) corresponds to that of Sanzugawaformation.This formation contains the organic matter underlying only to the northern part of the fault. However, higher δ 13C values to the northern part, coexist with high concentration of H2. Soil gas samples from Kawarage and Doroyu geothermal manifestations contain high concentrations of Rn, H2 and CO2, and the δ 13C values also are extremely high. Therefore, it is inferred that CO2 derived from a deep-seated geothermal system are added to those originated from organic matter in the Sanzugawa formation. These data indicate that the δ 13C values of CO2 can be useful in geothermal prospecting in addition to information provided by H2 measurement. Soil gases from Kawarage and the vicinity do not give the high Rn concentrations, in spite of the high Hg concentrations. Such a fact may give the information on the alteration by the secondary hydrothermal water without U and Th, which is originated from the vaporization of deep-seated geothermal water. Furthermore, the 3He/4He and 4He/20Ne ratios of Kawarage fumarolic gas are 9.5×10-6 and 180, respectively, indicating that the He is originated from magmatic gas. This fact is consistent with a consideration that the heat source of this geothermal field is the magma of the neighboring Quaternary volcanos such as Mt. Takamatsudake and Mt. Kabuto.

Content from these authors
© The Geothermal Research Society of Japan
Previous article Next article
feedback
Top