The announcement of the 1994 Nobel Physics Prize to Brockhouse and Shull actually during the ICNS meeting, must rank as one of the best-timed events for any Conference organizers! Of course, as neutron scatterers, we are justifiably proud of their achievements and the (long overdue) recognition of our field, but it also allows us to look back over the intervening years and contrast the work presented at ICNS with the work of these pioneers. What they did, of course, was to identify the principal interactions of the neutron - in the case of Shull, because the neutron's wavelength is comparable to interatomic distances, the ability of the neutron to distinguish the position and directions of the magnetic moments in solids and the positions of hydrogen atoms. In the case of Brockhouse to determine the elementary vibrations in solids using the fact that the energy of thermal neutrons is comparable to that of these excitations. As one glances through the abstracts of ICNS-94 one realizes that all the papers emphasize at least one of these interactions, and many of them more. Thus, the basis for the utility of neutron scattering has remained unchanged since they were laid down by Shull and Brockhouse between 35 and 45 years ago. What has changed, of course, is the complexity and detail of the systems that are now examined.

Let us look at the ICNS presentations to see some of the present-day examples. In the case of the interaction with the proton, which accounts for probably a third of all neutron experiments, we can take the sophisticated experiments on polymers and polymer films illustrating the interaction potential of different block copolymers (T. Russel, IBM), and the beautiful experiments in biology reporting the positions of the water molecules around the DNA helix and the localization of disordered nucleic acid in virus structures (P. Timmins, ILL). For magnetism, we have the complex magnetic arrangements found in magnetic multilayers, which can now be used even for polarization of the neutrons themselves (C. Majkrzak, NIST and P. Böni, PSI), and work such as the observation of the spin-density around an organic free radical (J. Schwizer, CENG) and the complex magnetic arrangements found in systems such as CeP (M. Kohgi, Sendai), which have a deceptively simple crystal structure.

In the field of dynamics probed by the neutron there is a similar enormous expansion of effort and complexity. Two examples are the examination of the dynamics of coal by a joint French-British group, and an American-Japanese collaboration looking at the vibrational states of hydrogen in water physisorbed on modified zirconia. Examples combining the possibility to measure inelastic scattering with the ability to identify contributions from the unpaired (magnetic) electrons have been an important feature of research on high-T_c superconductors, and we had an excellent talk by H.
Fukuyama (U. of Tokyo) on the important role that neutron scattering has played in trying to decide on the origins for the superconductivity of these important materials.

Of course, when Shull and Brockhouse started their experiments they worked in an environment of applied problems; these were the days when the reactors on which they worked were being used to test new concepts and materials for nuclear power; but their own work was permitted as a scientific curiosity. Now neutron beams themselves are being increasingly used as tools in industry and this was illustrated for us at the ICNS by the opening talk of S.K. Sinha (Exxon Research) who showed us many ways in which neutrons can provide uniquely important information on real technical problems. Examples were drawn from the petroleum, chemical, plastic, and electronic industries. Later there was a special session on determinations of residual stress in mechanical components with neutron beams. Tom Holden (Chalk River, Canada) explained that the stress-corrosion cracking of steam turbine tubes is a 3 billion dollar problem in the US - and that neutrons are making a contribution towards at least ameliorating it.

Something like 350 people attended the Conference, more than 50% from outside Japan. This gave a special opportunity for all the foreigners to become acquainted with the large and successful neutron scattering effort at both the reactor and spallation sources in Japan, and their many collaborations using other facilities, e.g. the Japan-US and Japan-UK agreements. From my own impressions, and from many with whom I talked, the Conference was a great success - a fitting tribute to the news of the Nobel Prizes that delighted us all so much, and was followed by the good news of the literature Nobel Prize to a Japanese! I thank our Japanese hosts, from the Conference Chairman, to the athletic students who ran about the auditorium with the microphones in question time, for the first-class organization and hospitality.