大豆の耐冷性に関する現地選抜試験

III 回帰分析による収量安定性の推定

三分一敬・土屋武彦

十勝管内の山麓地帯および沿海地帯に位置し、気象的にもとよく冷湿な湿地町（R）と大網町（T）、中央部に位置し、気象的に未発達な芽室町（M）の3ヶ所にて、1968年（正常年）、1969年（低温年）の2ケ年にわたり、十勝農試保存中の大豆早生種71を生育させた。

各品種の収量変動を回帰分析（Finlay and Wilkinson 1963, Eberhart and Russell 1966）を適用し、収量の安定性を推定した。

供試品種の中で、Holmberg氏が日照少なく、低温気象条件のSwedenのFiskebyで選抜した25品種（もしくは系統）に焦点をあて、北海道産の24品種との比較を行なった。

年次および場所を含めた子実収量の分布分析の結果、品種×年次、品種×場所、品種×年次×場所の交互作用はいずれも1%水準で有意であり、個々の品種が各環境に対して複雑に反応していることが認められた。ここで、年次、各場所を一連の環境と考え、各環境における全品種の平均値を総平均=各環境指数の式を用いて環境指数（第1表）を求めた。

環境指数に対する各品種の回帰係数を求め、北海道産品種とSweden産品種の比較を第2表に示した。

回帰に関する分散分析の結果、回帰係数の品種間差異の分散は、回帰係数の残差の分散に対して1%水準で有意であり、回帰係数の信頼度が高いことが認められた。

試験結果は次のように要約される。
1. Sweden産品種の回帰係数bは一般に小さく、25品種中1より大きかったのは1品種のみであった。これに対し、北海産品種のbは一般に大きく、25品種中3品種のbが1より大きかった。（第2表）
2. 回帰直線からの残差分散S^2は、Sweden産品種で一般に小さかった。（第2表）
3. bは平均収量（y）が低いほど大きい傾向を示した。（第1図）
4. Sweden産品種の収量性は一般に低いま、同一収量レベルの北海道産品種と比較しても、bは一般に

小さく、収量の安定性が高いことが認められた。（第1図）

bは熟期のそれぞれにより大きく、Sweden産品種は一般に早いか、同一熟期レベルの北海道産品種と比較しても、bは一般に小さかった。

6. 本試験における各環境の差異は、Rにおける生育後半の低温、Tにおける生育前半の日照不足と低温、1969年の低温気象によって複雑に反応するので、各品種の収量変動は主として、品種の気象性やとくに耐冷安定性にとくもとくとえられる。