スケーリングを用いた生物の大きさや規模を変えたときに生じる問題を解決するために発展してきた工学の分野である。一方、生物学におけるスケーリングは体サイズの変化に伴って変わる構造や機能といった、生物学的性質（biological traits）と大きさの関係を明らかにして、生命的基本設計ならびに原理の理解を目指すものである。多くの形質は分子、細胞、器官、個体、個体群、群集さらには進化生態ダイナミックスといった様々な階層において体サイズと密接な関係があるので、スケーリング研究は非常に重要な分野である。本稿は具体的な実験方法そのものを提示するものでは必ずしもが、特に個体の階層レベルにおけるスケーリングの簡単な背景と、生理・生態学において重要な意味を持つエネルギー代謝量を著目し、スケールと関係に関する議論を紹介する。

2.1 大きさの範囲

過去3000年間にわたる進化の過程において、小さい方に進化した例があるが基本的には動物でも植物でも上限の体サイズが増加してきた。とりわけ脊椎動物や無脊椎動物の多くのグループでは数百万年間にわたって顕著なサイズの増大を示している。細胞の核生物において細胞の大きさは一定の限界内（約1〜5μm）にとどまっていることを考えると、体サイズの増加は個体間の細胞数の増加を意味する。生物の多細分化は細胞そのもののを分化させ、これらの機能分化した細胞が集まって組織を作り、より複雑な生体機能を有する。同時に、物質の取り込みや熱を含む代謝産物の排出のために呼吸・消化・排出器官の機能面積を増大させた。

2.2 体サイズの取り扱い

粒子サイズとは生物の鈍化を特徴づける形状的サイズである。この量的形質は個体として存在する生物の基本的な形質の1つで、多くの生物は同種の成熟した個体よりも小さなサイズで生まれ個体発生に伴い体サイズが増大する。時間の経過に伴い生物体の絶対的数が増大する（絶対成長、absolute growth）という意味において、体サイズは生物体の絶対数を数値数として、時間の独立変数とした関数で表現される。しかし、体サイズの適応や進化を示した体サイズそのもののをひとつの独立した形質として扱う進化生態学などの分野において、時間の数値として表された体サイズを個体間あるいは系統間で比較するのは一般的なことはない。そこで比較の結果を分かりやすく把握するためにスケール（scalar）として定義された体サイズを用いる。成長のタイプが種または分類間で異なるため、一般に形態的性質に異なる特徴のあるステージから次のステージに移行する時点で体サイズが変われる。両生類では幼生段の変態時の体サイズを示す摂動が多く、単細胞生物、鳥類そしてほとんどの哺乳類などの特異な体サイズ（多くの場合は性成熟時に達した後、それ以上大きくなりえない）決定成長（determinate growth）の生物では最終体サイズ、他方、魚類などの非決定成長（undeterminate growth）の生物では性成熟時の体サイズをスケールとして扱う。

スケーリングでは、対象物の大きさによって機能や構造、さまざまな生態的形態がどのように影響するかを採るという観点から、ある形質をその生物系全体の関数として表す必要が生じる。これは生物個体の全体あるいは部分を独立に扱うために、特に生態学的な観点から特に重要である。
変数、形質を従属変数として相対的な大きさを表すことを意味し、時間は潜在的な要因となる。一般に、生物の全体 (whole body) の体重量 (body mass) が知られている。体重量は、生物体の全体重量 (body mass) である。体重量は、生物体の運動や行動に必要な筋肉量、そして摂食量などについての問題で重要である。しかし、体長 (body length) の測定に用いた表示方法が理解しやすいケースもある。魚類の遊泳速度 (m/min) は尾を打つ頻度 (Hz) と① とともに直線的に増加していくが、遊泳速度を魚の体長と相関させると、尾を打つ速度と打つ速度との関係は体長の一定の割合で指数関数的に増加し、尾の挙動に拘らず全ての魚が同程度に増加する。この関係を魚の成長率を用いて表することは可能であるが、体長で解析された関係は、魚の成長率を考慮すれば変化する。従って、魚の成長率を考慮すると本当に単純さが失われる。また、Reich らは植物の呼吸量を植物体の全窒素量の測定で解析を試みたが、同種内で植物が異なる種間でも共通の関係であることを報告した。このように生物学的形態を測るとき、どのような体サイズをスケール (尺度) として用いるかが得られる情報に変化を示すことができる点に注意しなければならない。

3・2 アロメトリーについて

3・2・1 アロメトリー

体サイズの変化が生物個体の構造や機能にどのように、またどのように影響するのかを知りたいとき、それらの関係を分析的に捉えやすく、観察しやすい形で表す必要がある。Huxley や Teissier は、生物個体におけるある 2 つの部分 y と x の相対的な大きさの比較を

\[y = ax^b \]

というアロメトリー式で記述する方法を提唱した。ここで比例係数 a と指数 b はともに定数である。この関係は通常 2 つの測定値（変数）の比較から成り立っている。体の細かな変化や複雑さは考慮されていない。また、y と x の等式の両辺を対数変換すると

\[\log y = \log a + b \log x \]

となり、両対数グラフにプロットすると切片 a、傾き b の直線で表される。両対数グラフは、両数対数軸上の直線する 2 つの関数の距離が対数の変数に飽和する。10 倍異なっている数どうしが同じ直線になっており、1 個のグラフ上の直線を spel と名付けることができる。これは大きな数値の場合はその間隔を縮め、小さな数値の間隔を拡大しているため、この観点では我々が普段大まかなものを見るときに遠ざかり、反対に小さなものを見るときには近づいて見えると同一である。

実際に前の形態学的、生理学的な量的形質と体サイズの関係がアロメトリー式で評価することが知られている。指数傾き b は、投げた形質によって様々な値をとる。例えば、陸栖哺乳類の種間の比較では心臓の大きさは体重の一定の割合を占め、体重の増加にもとない心臓重量も増大する。1 項 A の関係は b = 1.00 の単純な比例関係で、全ての大きさを一様に変えて同じ形をつくる (相似的な形の決まり方をする) という意味からアロメトリー (Allometry) と呼ばれる。一方、アロメトリー (Allometry) はアロメトリーと対比される言葉で異なる尺度による (という非相違的な形の決まり方を意味する)。骨格重量と体重の関係では b = 1.09 となり、骨格は体重比例より大きな割合で増大する。1 項 B の関係は、体重量と体重の関係では b = 0.70 となり、体重の増加よりも低い割合で増大する。1 項 C の関係は、心拍数と体重の関係では b = -0.25 で、体重の増加に伴う減少が示される。1 項 D の関係は、全対数で示している。

図 1 陸栖哺乳類の生物的形質 (A) と体サイズ (B) の組織における関係

A. 心臓重量は体重に比例して増大する。
B. 骨格重量は体重比例よりも高い割合で増大する。
C. 脳重量は体重比例よりも低い割合で増大する。
D. 心拍数は体重の増大に伴って減少する。
証が無いためである。

4 エネルギー代謝量のスケーリングについて

代謝量（metabolic rate）は、1 個体の動物が生きていくために必要な単位時間当たりのエネルギー消費量のことである。動物の状態により代謝量は変化するので、計算時の動物の状態により定義された代謝量が用いられる。動物を安静状態におき長期に渡って何時も活動していないときの代謝量を安静代謝量（resting metabolism）という。また動物が最大活動を一定時間維持できる運動を行っているときの代謝量を最大活動代謝量（maximum active metabolism）という。

単細胞生物から無脊椎動物、魚類、そして恒温性動物の哺乳類にいたるまで全ての生物の安静代謝量と体重の関係もまたアプロピアトリー式で表される。この関係は同一種内の個々の大きさの個体の間と個代謝の個体発生、ontogeny of metabolism 大きさの異なるいろいろな種の間の代謝量の系統発生、phylogeny of metabolism のあり、両者は区別して考える必要がある。

代謝量の系統発生において最も良く知られているのは、おそらくネズミ - ツシマツリギ線である。Kleiber はラットから去勢牛までの 4000 倍のサイズ幅にわたり、種が異なる様々な大きさの鳥と哺乳類の代謝量と体重の関係を調べ、0.74 の指数をもつ 1 本の直線で表されることを発見した。Brody は動物のサイズの範囲と種数を増やしハッカネズミからゾウの範囲で検討した。回帰直線の傾きは 0.734 を示し、Kleiber のものとほぼ同じであった。その後、さらに、サイズの範囲を増やして単細胞生物から恒温動物にいたる 109 倍のサイズ幅で代謝量と体重の関係が調べられ、それによると指数は 0.751 となりこれが Kleiber のものと有意に外れている事が分かった。図 2 に示す。単細胞生物、恒温動物そして恒温動物の動物群では共通した傾きを持っていますが、比例係数の値はそれぞれ 0.018, 0.14 そして 1.1 と異なっている。同じサイズとして比べれば、恒温動物の代謝量は変温動物のもの 30 倍ほどの違いがある。また、単細胞生物の代謝量は変温動物の 1/8、恒温動物の 1/230 しかない。恒温動物の体温は 39°C、変温動物と単細胞生物の体温は 20°C として計算しているが、体温の違いが代謝量の違いを反映しているのかどうかがある。体温による影響を Q10 = 2.5 〜 3 として補正計算をしたが、恒温動物は変温動物の 5 倍、単細胞生物の 40 倍も多くエネルギーを消費している。一方、Gilhooly のポリフェノールの代謝を用いた総合的な温度依存性（Q10）、universal temperature dependence 考慮した補正ではこの違いは小さくなり、恒温動物は単細胞生物のおよそ 20 倍高い。このような細胞レベルでの高エネルギー産生といった機能の増強は、進化的歴史において生物に大きな質的変化をもたらしたことが推察される。

アロステリーモーク指数 3/4 の生物学的または物理学的導出がこれまでにいくつか提案されてきた。一方で、これまでにとりあげられてきたデータを再検討し、必ずしも測定結果が 3/4 の指数を導くものではなく 2/3 の指数を否定できないとするものや 3/2 の統一的な指数を持たないとするものなど、さまざまな議論が続いている。

哺乳類の種類において代謝量と体重の関係では、指数が 3/4 になることを上で述べたが、Heusner および Feldman and McMahon による統計学的解析によって、同一種内では指数が 2/3 となり小さい動物から大きいものへかけて比例係数が増加している。最大の動物（シラブシでは最小の動物（マウス）より a 値が 3 倍大きいことが報告されている）。爬虫類の一種の指数がおよそ 2/3 になる種がいるが 2/3 の指数は、できるだけ多くの動物種に当てはまるわけではない。代謝量の個体発生は発育段階に応じて複数の相からなる複雑な過程をたどることが知られており、最も正確に見積もりられているヒトでは、10 日齢（体重 4 kg）までの新生児は体重を増大させないまま代謝量が増加し、おおよそ 3 倍（10 12 kg）までの間では指数が 1 となる。ヒトの発育段階における代謝量の増加は、おそらく新段階発動が導入されることを示している。ヒトの成長は、新段階発動が導入されることによって変動し、新しい段階が定義される。新段階発動が導入されることによって変動し、新しい段階が定義される。新段階発動が導入されることによって変動し、新しい段階が定義される。

図 2 単細胞生物、恒温動物、多細胞生物、哺乳類の代謝量と体重の関係。

5 おわりに

第 29 回日本生物化学学会大会の「そが知りたいリキエストボックス」のコーナーでアロステリーモーク式の比例係数の a 値が異なるというのはどのような意味があるのか、哺乳類と魚類の代謝アロステリーモークの傾き b 値にどの
ような違いがあるのか（という重貴な質問をいただきました。上述のように本ノートはこれらの質問に明示に答えたものではありません。スケーリングに関する研究の歴史は古く、代謝量と体サイズの関係に限っても多くの生物・化学・物理学者がその明確に心血を注いできましたが、ご質問の内容を含めて未だ多くの謎が残在しており議論が続いています。この問題の解決は生物の基本原理や設計の本質的な理解に寄与するものです。最後になりましたが、このノートが今後の比較生理生化学会の研究に多少なりともお役に立てれば幸いです。

文 献

20) Kleiber, M.: Hilgardia, 6, 315-353 (1932)
24) 本川達雄：ゾウの時間ネズミの時間，中央公論新社 (1992)
28) Prothero, J.: Growth, 43, 139-150 (1979)
34) Tessier, G.: Travaux de la station biologique de Roscoff, 9, 27-238 (1931)

Abstract

A brief note on allometric scaling in biology, with special reference to energy metabolism

Mitsuharu Yagi and Shin Oikawa
Fishery Research Laboratory, Kyushu University, Tsuyazaki, Fukuoka 811-3304, Japan

Body size is one of the most important axes to understand a large biodiversity. An amazing diversity in body mass of lives ranges over about 21 orders of magnitude, from a tiny bacteria such as Mycoplasma weighing 10^{-6}g to a giant Sequoia tree weighing 10^9g. As a consequence of this variation, nearly all the structures and functions of organisms are constrained with body size, from the molecular, cellular and whole-organism levels to the ecological and evolutionary dynamics. These relationships are well described by the allometric equation. In this note, we introduce backgrounds to focus on some important correlates and consequences of body size, in particular on energy metabolism at the level of individual organism. Metabolism of an individual organism reflects the energy and material transformations that are used for both the maintenance of existing structure and the production of new biomass. Although body size is a primary determinant for metabolic rates, metabolism-body size relationships, in particular within species, i.e., the ontogenetic changes of
metabolism with growth have not been well established in many species. The metabolic scaling in biology still keeps an intriguing and enduring problems.

Keywords; allometry, body size, metabolism, scaling